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Abstract
Smoothly blended articulated models are often difficult to
construct using current techniques.  Our solution in this paper is
to extend the surfaces introduced by Blinn [Blinn 1982] by
using three-dimensional convolution with skeletons composed
of polygons or curves.  The resulting convolution surfaces
permit fluid topology changes, seamless part joins, and efficient
implementation.
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INTRODUCTION
Animators seek models that flex and transform, but which are
easy to position and mold.  Designers often create these lively
shapes by skillfully combining primitives, such as parametric
surfaces (including polygons), or implicit surfaces and solids.

A parametric surface is given by a spatial position function:
p(u, 

 

v) = [x(u, 

 

v), y(u, 

 

v), z(u, 

 

v)].  In practice, the functions are
splines defined by pieces of polynomials, or ratios of
polynomials [Farin 1990], and are shaped by a sparse set of
control points with an intuitive geometric relation to the
surface.  A single B-spline surface is naturally smooth, despite
its piecewise construction.  It is difficult, however, to create a
smooth union of surfaces automatically.

An implicit surface is the zero-set of an implicit function f(p) =
f(x, y, z).  Including points for which f(p) is positive gives a
solid.  In practice the most common functions used are
polynomials, especially quadratics.  The resulting algebraic
surfaces can represent any rational polynomial parametric
surface, as shown by classical algebraic geometry theory
[Sederberg 1983].  The reverse is not true, however, suggesting
that algebraic surfaces are more powerful than parametric
surfaces.  Unfortunately, quadrics are limited in shape, higher
degree surface methods are in their infancy [Sederberg 1985]
[Bajaj 1990], and blending surface construction [Warren 1989]
seems difficult to automate.

Although algebraic surfaces show promise, in this paper we
explore the advantages of implicit surfaces based on skeletons .
Like control points for a spline surface, a simple lower
dimensional object, the skeleton, resembles and controls the
shape of a more complicated object.  Vision research suggests
that stick figure skeletons are natural abstractions for shapes

[Nevatia 1982].

In particular, we extend the approach of Blinn [Blinn 1982],
Wyvill et al. [Wyvill 1986], and Nishimura et al. [Nishimura
1985], who used implicit functions defined by the summation of
point potentials.  The points generate spherical iso-surfaces
which blend smoothly into each other when brought together;
hence a point may be considered a skeleton which is fleshed out
to form a body.  Points, however, are not entirely satisfactory
skeletons; for example, points that approximate a flat surface
must be closely packed to avoid bumps.

After briefly considering an alternative generalization, we
propose the use of convolution surfaces, and show they are a
natural, powerful re-interpretation and generalization of
potential surfaces.  Colburn has used implicit surfaces based on
convolution to round a solid model [Colburn 1990]; we use
convolution with piecewise planar skeletons to generate models.
Convolution surfaces incorporate the smooth blending power
and easy manipulability of potential surfaces while expanding
the skeletons from points to lines, polygons, planar curves and
regions, and in principle, any geometric primitive.  We exploit
properties of convolution in general, and Gaussian convolutions
in particular, to compute our surfaces efficiently.

POTENTIAL SURFACES
Blinn stepped beyond algebraic surfaces for molecular modeling
by generating an exponentially decreasing field from the center
of each atom and rendering the iso-potential surfaces [Blinn
1982].  That is, from a set S of atom centers an implicit
function is defined at any point p in space as

f(S, p)  =  Σ
s ∈ S

 exp ( )–|| s–p ||2

2 .

The surface is given by those points p satisfying f(S,p)–c = 0,
where c is the iso-potential value.

Others have preferred pieces of polynomials for the field
functions [Wyvill 1986], [Nishimura 1985].  Essential features
of any such function are that it decrease monotonically, and
drop to a negligible value beyond a moderate radius.  (Although
Blinn observed that the decay need not be spherically
symmetric, this possibility seems to have been largely
neglected.)  Thus a single point generates a spherical shell, and
well-separated points generate separate spheres.  As two points
are brought together, their shells reach out and merge smoothly.
When the points are coincident, a single larger sphere results.

Because the non-negative regions of these implicit functions
define solid volumes, CSG set operations are also possible.
Simple arithmetic operations on the function values suffice
[Ricci 1973]; for example, max(f(S1 , p), f(S2 , p)) gives the
union of the two volumes generated by S1 and S2.  Negating the
implicit function is also of interest, allowing us to subtract
volumes.

One advantage of potential surfaces is that they blend
smoothly.  Another is that they are simple to edit; to alter the



surface one merely moves, adds, or deletes points.
Unfortunately, flat surfaces can only be approximated.

DISTANCE SURFACES
Point skeletons can be generalized to polygonal skeletons in at
least two ways: by computing the potential from only the
nearest point of the polygon, or by summing the potentials from
all the points.  The second possibility gives convolution surfaces;
the first gives distance surfaces—or offset solids in the sense of
Requicha [Requicha 1983].  Distance surfaces are iso-surfaces of
µ(S, p), the function value at a point p defined by

µ(S, p) = min
s ∈ S

 || s–p ||.

When S is a spline curve or planar polygon, µ  can be computed
without explicitly calculating the distance to each point s of the
curve or polygon [Bloomenthal 1989].  For a polygon,
projecting p onto the plane of S reduces the problem to one in
two dimensions.  If the projection lies inside S, use the distance
to the plane; otherwise, use the distance to the nearest point on
an edge.

As defined, µ  is not suitable for blending; however we can use it
to replace the distance calculation in Blinn's exponential, giving
one generalization of potential surfaces, f(S, p) = exp(µ2(S,
p)/2).  Because this is a composition of monotonic functions,
one of which is decreasing, it can be written as

f(S, p) = max
s ∈ S

  exp( )–|| s–p ||2

2 .

This function gives the union of the volumes generated by all
the individual points of the collective skeleton, S.  When the
skeletons are not convex, the resulting distance surfaces can
show creases, or curvature discontinuity, as seen in Figure 1;
these are often undesirable.

Figure 1: Distance surfaces—skeletons, sum, union
The blending of primitives within a solid modeling system has
received considerable study, as shown by the survey of methods
in [Woodwark 1986], and the more recent [Rockwood 1989],
[Sederberg 1987], and [Warren 1989].  As Warren [Warren
1989] has shown, for algebraic surfaces blends have a well-
defined form involving a weighted sum of products of the
defining polynomials.  The simplest approach for blending
distance surfaces is to sum the values from each of the
skeletons. This eliminates creases but also creates bulges.  For
polygonal skeletons, especially, it is awkward to achieve blends
without bulges.  One bulge prevention method for algebraic
surfaces is proposed in [Middleditch 1985]; it is expensive and
complex, however, especially for more than two primitives.
Furthermore, our surfaces are not algebraic.

CONVOLUTION SURFACES
We propose to have the best of both worlds: the spline and
polygon generators of distance surfaces plus the well-behaved
blends of potential surfaces.  Although potential functions based
on µ  reduce to Blinn potentials when applied to a skeleton
consisting of a single point, they behave differently for extended
skeletons like polygons.  One particular difference is instructive:

the surface from a skeleton broken into pieces is not the same
as that of the unbroken skeleton.  For example, two halves of a
line segment produce a surface which bulges at the joint.  This
is because each skeleton generates a surface which is a union,
using max, while the blending uses summation.  If the skeleton
is broken down into infinitesimal pieces, i.e., individual points,
the union becomes irrelevant, and the result is a pure
summation,

f(S, p)  =  Σ
s ∈ S

 exp ( )–|| s–p ||2

2 .

or more properly, an integration,

f(S, p)  =  ∫S
exp ( )–|| s–p ||2

2  ds.

This new f is, in fact, the convolution of a spatially extended
skeleton, not just a point, with a three-dimensional Gaussian
filter kernel [Dudgeon 1984].  Formally, let S(p ) be the
characteristic function for the skeleton (meaning S(p) = 1 if p
is a point of the skeleton, otherwise 0), and let

h(p)  =  exp ( )–||p||2

2 .

(For the sake of brevity, we omit a more rigorous development
involving Dirac delta functions.)  Then, using ★  to represent
convolution, we have

f( p)  =  (h ★ S)(p)  =  ∫S
exp ( )–|| s–p ||2

2  ds.

Convolution is usually considered part of the signal processing
theory used to discuss and deal with aliasing in rendering [Foley
1990]; it is not commonly thought of for modeling shapes.  Yet
uniform B-spline curves and surfaces can be defined as the
convolution of the B-spline basis functions with the control
points [Farin 1990, p. 147], and robot path planning is
simplified by convolving the room obstacle geometry with the
robot's shape (the robot can then be treated as a point [Lengyel
1990]).  Colburn has used an implicit surface based on
convolution of a solid model with a Gaussian kernel as a way to
round the corners of the solid [Colburn 1988, 1990].

Since we base our kernel on the potential function, when the
skeletons are points convolution exactly reproduces the
potential surface.  For isolated convex skeletons such as
triangles, rectangles, or line segments, convolution surfaces have
almost the same shape as distance surfaces.  Now, however,
concave skeletons will also be smooth, and adjacent surfaces
will blend seamlessly.  Indeed, the superposition property of
convolution guarantees that two abutting polygons will yield the
same surface as a single more complex polygon which is their
union:

h ★ (S1  + S2)  =  (h ★ S1) + (h ★ S2).

This is shown diagrammatically in Figure 2.



Figure 2: Superposition
To construct a smooth, complex surface from simple skeletons,
we need only sum their convolutions.  Figure 3 illustrates results
for the animation of two adjacent rectangular skeletons, with
the upper one rotating; the primitives merge smoothly into a
single shape.  In contrast, the sum of algebraic surfaces is
completely unsatisfactory, since the complexity of the surface is
limited by the degree, which summing does not increase.  For
example, the sum of any number of quadric surfaces, say
spheres, is a single quadric surface!

Figure 3: Model articulations.

IMPLEMENTATION
One motivation for using distance surfaces is that they are
reasonable to compute; it is not immediately clear that the
same is true for convolution surfaces.  In some sense, however,
convolution is less complicated than minimizing distance, and is
more efficient to compute.

Because of the superposition property, we are free to partition a
skeleton.  Still, it is impossible to evaluate the convolution, even
for a polygon, by explicitly summing the influence of each
point.  A Gaussian filter, however, has the special property of
being separable; it can be factored into a product of lower-

dimensional Gaussians.  We can, for example, separate the z
component:

h(p)  =  exp ( )–||p||2

2   =  exp ( )–(x2+y2+z2)
2

=  exp ( )–(x2+y2)
2  exp ( )–z2

2 .

Thus to convolve with a polygon lying in the x-y plane, we can
first perform a planar convolution, then convolve in z.  Because
polygons have infinitesimal depth, the z convolution is trivial.
The planar convolution requires more work, but is again
separable into x and y.  We have reduced the spatial
convolution of a polygon to

f(S, p)  =  exp( )–|| zS–zp ||2

2

∫S|y

 
exp( )–|| y–yp ||2

2 ∫S|x

 
exp( )–|| x–xp ||2

2  dx dy.

For a skeleton such as a line segment, the y integral collapses
like z; a point requires no integration.  A Gaussian is also
spherically symmetric—it looks the same in all directions—so
this same kind of three axis separation can be used no matter
how the skeleton is oriented in space.

This suggests a convenient approach for planar skeletons.  Scan
convert each polygon into its own digital image, filter the image
in two directions by a Gaussian, then multiply a Gaussian
function of the distance from p to the plane of the image by the
intensity at the point onto which it projects.  Figure 4 illustrates
the process.  The images cache planar convolution results, and
can be computed efficiently if convolution is performed during
scan conversion.

Figure 4: Computing value of the three-dimensional
convolution at a point in space.

In practice, we approximate a Gaussian with a cubic spline, to
simplify computation and to limit kernel width.  Artifacts of
the scan conversion can be avoided by choice of a suitable
resolution.  A Gaussian kernel approximates an ideal low-pass
filter, removing high frequency details of the skeletons.  Hence
the effective bandwidth of the Gaussian can be used to
determine the sampling frequency needed to preserve accuracy
in the sampled images, and can guide the choice of spatial
sampling frequency for polygonization [Bloomenthal 1988],
[Hall 1990], [Dobkin 1990].  A standard Gaussian passes less
than 1% of the energy in frequencies higher than half a unit, so



in this case four samples per unit should suffice.  Colburn
discusses analogous resolution requirements for his octrees.

Although Colburn quotes compute times of days, we polygonize
a surface in minutes.  Colburn, however, is solving a different
problem: he wants to make minimal changes to an existing
solid.  The solid is diced into tiny cubes before convolving; and
while he uses separability, he cannot cache planar convolutions
as we do.  His method requires significant operator input to
define patches through which to trace rays.

Our planar approach can be especially fast for animation; when
a skeletal piece is used in many frames without change in shape,
the planar images can be reused.  Convolution surfaces are
cheap in other situations as well.  For a potential surface,
evaluating the implicit function at a point requires calculating
the distance to each nearby point, mapping each distance
through a Gaussian, and summing.  For a convolution surface, a
swarm of co-planar points can be replaced by a single planar
image, which requires only one distance calculation, one
Gaussian evaluation, and interrogation of the image.  The sum
over points has been replaced by a planar convolution that is
factored out of the inner evaluation loop and need only be
calculated within a kernel width of the polygon perimeter.

Any point, line, or planar skeleton can be handled, and more
general skeletons can be diced into polygons or polylines using
standard techniques; the bandwidth of the Gaussian filters
provides a least upper bound on the size of the pieces.  As an
example of the versatility of our method, Figure 5 is a
convolution surface whose skeleton is a five-sided S-patch
[Loop 1989].

Figure 5: Convolution surface from S-patch skeleton.

VARIATIONS
The shape of a convolution surface can be varied in (at least)
five ways: by changing the iso-value, changing the shape of the
skeleton, changing the skeleton “weight,” changing the
convolution kernel, and by spatial deformation.  These can be
illustrated with the two-dimensional potential function depicted
as a height field in Figure 6. The usual CSG operations are still
possible, so components of a model need not blend together.  As
noted previously, unions and intersections can be obtained by
applying max and min to the component functions.

Figure 6: Convolution variations.
The iso-value defining the surface (or curves, in this two-
dimensional example) is represented by a horizontal plane that
intersects the mounds in a contour.  Raising and lowering the
plane, which is equivalent to adding a constant to the potential
field, causes the plane to intersect different contours.  Contours
could also be determined as the intersection of some curved
surface with the mounds; but again, the same effect can be had
by changing the potential field.

Changes in the shape of the skeleton correspond to moving the
mounds.  This is the most basic design variation.

It is not necessary for S(p) to be restricted to 0 or 1.  When S is
a set of points, each point can be given its own weight, and its
influence will be scaled accordingly.  In the illustration, this
corresponds to the differences in height of the mounds.
Negative weights correspond to pits rather than mounds, and
offer a way to avoid unwanted blending, such as between the
fingers of a hand.  Decreasing the skeleton weight along a line,
for example, gives a tapered shape, like a carrot. Incorporating
a weight function, w(s), in our defining function yields

f(S, p)  =  ∫S
w(s) exp ( )–|| s–p ||2

2  ds.

If the kernel is to remain a Gaussian, the only aspect of its
shape that can change is its width.  It is not necessary to
convolve all parts of a skeleton with the same width Gaussian;
narrow widths can be used where more detail is desired, while
still blending well.  This difference is illustrated by the low
mounds in the figure.  We speculate that Gaussians with
broader widths can be used to provide models with less detail
for small or distant objects.

Deformations [Barr 1984] [Sederberg 1986] can be applied to
any form of surface, but convolution surfaces allow new
possibilities.  For example, the skeleton offers a convenient
reference frame for a spatially variant function, such as a
stretch perpendicular to the skeleton, breaking the symmetry of
the Gaussian.  The general quadric kernels Blinn used for his
“Blobby Man” can also be considered deformations [Blinn
1982].  Note that deforming the skeleton produces a different
effect than deforming the surface.  Figure 7 illustrates a surface
in which the convolution is twisted; the arm muscles in Figure 8
are stretched.



Figure 7: A twisted convolution.

SUMMARY
The use of convolution surfaces based on skeletons suggests
numerous applications in design and animation.  We have used
them to embed organic forms, such as muscles, within other
organic forms, such as an arm.  A procedurally generated
example is shown in Figure 8.  The arm was procedurally
generated according to joint angles and muscle size; a
corresponding parametric shape would be difficult to generate
procedurally.  Figure 9 depicts a mosaic of convolved planar
images.

Convolution surfaces offer a number of advantages, such as:

• The shape of the skeleton suggests the shape of the surface.

• The surfaces are smooth even if the skeletons are not.

• The topology of the surface can vary fluidly with changes
in the skeleton.

• The kernel width limits the influence of skeletons,
providing local control and allowing surface bounds
estimation.

• The blends are well behaved.

• The implementation is simple and efficient.

One disadvantage is the loss of an analytic representation for
the resulting surface.

Figure 8: Arm.
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Figure 10: Convolution mosaic.
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