
Polygonization of Non-Manifold Implicit Surfaces

Jules Bloomenthal and Keith Ferguson

Department of Computer Science

The University of Calgary

Abstract

A method is presented to broaden implicit surface modeling.
The implicit surfaces usually employed in computer graphics
are two dimensional manifolds because they are defined by
real-valued functions that impose a binary regionalization of
space (i.e., an inside and an outside). When tiled, these
surfaces yield edges of degree two. The new method allows
the definition of implicit surfaces with boundaries (i.e., edges
of degree one) and intersections (i.e., edges of degree three or
more). These non-manifold implicit surfaces are defined by a
multiple regionalization of space. The definition includes a
list of those pairs of regions whose separating surface is of
interest.

Also presented is an implementation that converts a non-
manifold implicit surface definition into a collection of
polygons. Although following conventional implicit surface
polygonization, there are significant differences that are
described in detail. Several example surfaces are defined and
polygonized.

CR Categories and Subject Descriptors: I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling -
Curve, Surface, Solid, and Object Representations.

Additional Keywords and Phrases: Implicit Surface, Non-
Manifold, Polygonization.

1 Introduction

In this paper we wish to broaden the scope of implicit surface
modeling to include combinations of volumes and surfaces.
Traditionally, implicit surfaces are two-dimensional
manifolds. A manifold surface is, everywhere, locally
homomorphic (that is, of comparable structure) to a two-
dimensional disk.

Any tessellation of a manifold surface, such as the
polygonization of a finite (i.e., bounded) implicit surface,
produces edges that are of degree two; that is, all edges are
shared by exactly two faces. Uncommon to implicitly defined
surfaces are manifolds with boundaries, which yield
tessellations with edges of degree one, and non-manifold
surfaces consisting of trimmed pieces whose tessellation yields
edges of degree three or more.

The combination of finite three-dimensional volumes and
two-dimensional surfaces is sometimes called mixed
dimensional modeling and its surface is characteristically non-
manifold. Such models are unusual in computer graphics.
Although considerable study has been devoted to the smooth
join of parametric surfaces [Farin 1988] and to blends of
implicit volumes [Rockwood 1989], the representation of a
combined surface and volume has received relatively little
attention.

2 Related Work

There have been several efforts to extend conventional solid
modeling [Mäntylä 1988] to non-manifold surfaces and
manifolds with boundary. Solid modeling is often specified
by a binary construction tree; if the leaf nodes are solid
primitives, the process is known as constructive solid geometry
and may be represented internally by three-dimensional half
spaces. If the leaf nodes include two-dimensional surfaces,
the half-space is unsatisfactory as an internal representation
[Miller 1986]. In these cases, the boundary representation, or a
variation [Weiler 1986], is often employed.

In [Muuss and Butler 1990] a non-manifold boundary
representation is constructed in pairwise order from simpler
solid and surface primitives. It appears the topology of the
resulting surface must, however, be pre-established. In
[Rossignac and Requicha 1991] and [Rossignac and O’Connor
1989] a simplicial complex is used to specify and internally
represent a mixed dimensional model. A calculus is
developed that permits the application of standard Boolean
set operations upon the mixed dimensional primitives. This
approach is examined further in [Paoluzzi et al. 1993].

As observed in [Mäntylä 1988], the construction of
intermediate structures during constructive solid modeling
requires both considerable attention to numerical accuracy
and significant case analysis of edge/edge and edge/surface
intersections. These issues also receive considerable attention
in the studies of mixed dimensional modeling.

Concrete examples are not presented in [Rossignac and
O’Connor 1989] and [Muuss and Butler 1990] and are limited
in scope in [Paoluzzi et al. 1993]. In this paper we provide
several definitions for and renderings of mixed dimensional
models. This paper describes the conversion of a non-
manifold definition to a concrete representation. As in
[Muuss and Butler 1990], we produce a polygonal tessellation
to approximate a model. Unlike constructive geometry,
however, we utilize an implicit representation for non-
manifold surfaces, extending conventional implicit surface
polygonization to accommodate these surfaces.

3 Implicit Representations

Let us consider a closed cylinder embedded in a sheet. Such
an object poses a dilemma as to its implicit representation. As
shown below, left to right, the object (truncated for
illustration) can be represented as surface only, surface and
volume, thin volume, and volume and trimmed surface. We
regard the first representation as insufficiently faithful. The
second representation is incorrect insofar as its physical
usefulness (in terms of manufacturing) or its imaging (if, for
example, the surfaces are semi-transparent).

Figure 1. Possible Combinations of Cylinder and Sheet

The third representation offers difficulty for the sampling
process commonly employed with implicit surfaces. The
sampling rates for a ray-tracer and for a polygonizer must
both be high (below left), when compared with those for the
‘surface only’ (below, right).

Figure 2. Sampling Rates for Polygonization and Ray-Tracing

Therefore, we conclude that the ‘volume and trimmed
surface’ representation, which contains edges of degree one,
two, and three, is the only accurate, compact, and unified
representation of a volume embedded in a sheet.
Unfortunately, this representation is not readily expressed as
an implicit surface, i.e., as a set of points p: f(p) = 0. An
implicit surface separates regions for which f(p) < 0 from
regions for which f(p) > 0. This binary partitioning of space
provides a definition for the ‘volume only’ shape, below left.
It can also, below middle and right, define the ‘surface only’
and ‘surface and volume’ shapes, if the surface bounds are

ignored. But it cannot define the ‘volume and trimmed
surface.’ Conventional polygonizers assume that f is
continuous and that points on opposite sides of the surface
have oppositely signed values; therefore, they require a binary
partitioning of space. For finite objects, they produce
manifold tessellations but cannot produce a boundary, i.e., an
edge with only one face. Nor can they produce an
intersection, i.e., an edge with three or more faces. In
contrast, any tessellation of a volume embedded in a surface
requires edges of degree one, two and three.

< 0
< 0> 0 > 0

> 0 < 0
< 0

> 0

Figure 3. Possible Implicit Definitions (cross-sections)

In this paper we describe a new method to define and
polygonize implicit surfaces that are non-manifold or
manifold with boundary. The method differs from
conventional polygonization in that it permits multiple, rather
than binary, regions of space. This multiple regionalization is
noted in [Rossignac and Requicha 1991]. As an example, we
employ four regions, shown below, to define a sphere
embedded within a square.

1
3
4

side view

1

3

4
2

Figure 4. Multiple Regions define the Sphere-Square

Here, a cube bounds a plane, creating the square; the surface
of the cube, however, is not of interest. Accordingly, our
surface definition consists of two parts: an integer-valued
region function, freg, that returns the region value of a point,
and a set of region-pairs of interest. For the example above,
the region pairs are {(1, 3), (1, 4), (3, 4)}, and freg(p) is: 1 for
|p| < r, 2 for max (|px|, |py|, |pz|) > s, 3 for pz > 0, and 4
otherwise, with r the sphere radius and s the half-length of the
square. An approximation to this object, produced by our
non-manifold polygonizer, is shown below. The use of
multiple regions is conceptually simple, and may be
implemented along the lines of conventional polygonization.
There are, however, significant differences.

intersection
edges

boundary
edge

Figure 5. Tessellation of a Non-Manifold

4 Comparison to Conventional Polygonization

Conventional polygonizers of continuous functions partition
space into adjoining cells that enclose the implicit surface
[Ning and Bloomenthal 1993]. In a process known as
continuation [Allgower and Georg], cells propagate across
faces that contain both positively and negatively valued
corners. With the non-manifold polygonizer, however, a face
must contain a region pair of interest. This prevents
unwanted propagation along uninteresting surfaces (such as
the cube above).

As with many conventional polygonizers, we utilize the cube
as the propagating cell and decompose it into tetrahedra. The
tetrahedra serve as polygonizing cells, producing one or more
polygons to approximate that portion of the surface contained
in the cell. The fundamental steps of polygonization are
diagrammed below As described in section 5, surface vertices,
which control the direction of propagation, are produced
during polygonization. Therefore, tetrahedra are polygonized
concurrently with cube propagation.

surface

decomposition

polygonization

continuation
(side view)

surface
vertex

cell
corner

Figure 6. Overview of a Polygonizer

Conventional polygonizers assume that a surface passes
through a polygonizing cell at most once. Thus, only a single
surface vertex, or edge vertex, is produced along a cell edge
that connects differently signed cell corners. This results in
zero, three, or four edge vertices within a tetrahedron, and, at
most, a single polygon edge, or face line, across a tetrahedral
face. Traversing from one face line to the next, around the
faces of the tetrahedron, produces a single three or four-sided
polygon. The non-manifold polygonizer performs these steps
of edge vertex computation and polygon creation, but, as we
will now show, must also accommodate face vertices, multiple
edge vertices along a single tetrahedral edge, and multiple
face lines within a single tetrahedral face.

As a consequence of multiple regions, more than two regions
can occur within a tetrahedral face. This yields more than two
edge intersections on the face as well as an intersection
internal to the face. For example, consider the three regions
that meet along the circular intersection of sphere and square.
In the illustration below (left), all three regions are spanned
by a single tetrahedron; indeed, three regions are spanned by
a single tetrahedral face (middle). This suggests the
computation of three edge vertices, a face vertex, and their
connection by three face lines (right).

3

1
3

4

Figure 7. The Face Vertex

Face vertices complicate implementation, but alternatives
either produce a topological inconsistency (below, left) or are
geometrically inaccurate (below, middle and right). These
inaccuracies cause undesirable visual artifacts along
intersections and boundaries of an object, unless the
tetrahedra are very small. Unfortunately, uniformly small
tetrahedra yield an excessive number of polygons, and
adaptively sized tetrahedra appear difficult to implement for
this application.

?

Figure 8. Alternatives to the Face Vertex

Regions can divide a face other than as shown in figure 7.
Two common cases, below, left, suggest a need for multiple
edge vertices, shown below, right. In one case, multiple edge
vertices occur along an edge connecting equi-valued corners.
Thus, unlike conventional polygonizers, the non-manifold
polygonizer inspects all edges, not simply those that connect
differently valued corners.

1

2
3

1

2
3

Figure 9. Multiple Vertices along an Edge

Let us consider the left face, above, its containing tetrahedron,
and an adjoining tetrahedron. The face is repeated below,
left, and the two tetrahedra are shown, right, separated for
clarity. The front face of the right tetrahedron is shown,
middle. The polygonal set produced by these tetrahedra are
more complex than produced by conventional polygonizers.
In particular, the left tetrahedron contains a 3, a 4, and a
5-sided polygon, each sharing the edge connecting the two
face vertices. The right tetrahedron contains disjoint surfaces.
Thus, in addition to a face vertex, a tetrahedral face must
accommodate disjoint face lines, each connecting edge
vertices that separate the same region pair.

Figure 10. Disjoint Face Lines and Polygonal Surfaces

Because the tetrahedral corners may all differ in value, one
tetrahedron may contain four face vertices, as shown below,
left. To facilitate the connection of face vertices so that the
four regions are properly separated, our polygonizer supports

an inner vertex within the tetrahedron that connects face and
edge vertices, as shown below, right (for clarity, the far
bottom edge vertex is not shown). Complex arrangements of
face, edge, and inner vertices can occur regardless of cell size.
These complexities are more readily accommodated by
evaluating tetrahedra independently; adaptive subdivision
would likely complicate this process.

Figure 11. Disjoint Face Lines and Polygonal Surfaces

A sufficiently complex object can require an arbitrary number
of face and edge vertices within a tetrahedron. For example, a
face might contain any of the arrangements below, regardless
of cell size. A robust polygonizer should handle these cases.
We have, however, restricted our implementation to one face
vertex per face or a collection of disjoint face lines per edge,
and one inner vertex per tetrahedron. Nonetheless, our
implementation produces reasonable results for the examples
we present later.

Figure 12. Complex Face Topologies

5 Implementation

In this section we provide details for cell propagation, cell
polygonization, and post-process vertex modification.
Throughout, the polygonizer attempts to produce surface
vertices whose location is independent of the region-pairs of
interest. Pseudo-code detailing these algorithms is given in
[Bloomenthal and Ferguson 1994].

We use the cube as the propagating cell, centering the first
cube at a start point, usually given, whose distance to a surface
of interest is less than half the size of the cube. To prevent
cyclic propagation, each visited cube location is stored in a
hash table, as described in [Wyvill et al.]. To simplify the
polygonization step, each cube is decomposed into six
tetrahedra [Koide et al. 1986]. For each tetrahedron
intersected by a surface of interest, a) each tetrahedral edge is
examined for edge vertices, b) each face is examined for a face
vertex, c) any necessary inner vertex is calculated, and d)
polygon(s) are produced.

As described in section 4, an edge vertex is placed at all edge
intersections along a cell edge. A hash table associates the
vertex with its tetrahedral edge and stored with each vertex is
the region-pair it separates. The binary subdivision often
used in conventional polygonizers is unsatisfactory because in
the first subdivision step half of the edge is ignored and
intervening intersections may be missed, as shown below.

found missed

edge
endpoint

edge
endpoint2 3 2

intersection intersections

surfaces

1st sample
2nd sample

3rd sample

Figure 13. Sampling by Binary Subdivision

Therefore, each tetrahedral edge is divided into equally sized
sections, as shown below, left. Binary subdivision is applied
to those sections whose endpoints have different region
values, below, right. If, during this binary subdivision, a
‘foreign’ region (i.e., a region not equal to either of the
endpoint regions) is encountered, the subdivision continues
recursively in both halves, detecting two (or more)
intersections in the given section. Edge vertices are placed at
the midpoint of the final interval(s) yielded by subdivision.
To guard against a narrow region crossing a final interval, we
test that the region value at the interval midpoint is one of the
two endpoint region values of the interval; if not, the
subdivision is continued. We choose n, the number of initial
sections, and m, the minimum number of subdivision steps,
such that each vertex will be within ε of an actual
intersection, i.e., edgeLength/(2(m+1)n) ≤ ε. We have
employed ε = 1/256 of the propagating cell size.

section
endpoint

edge
endpoint

section
endpoint

edge
endpoint

1st 2nd3rda section

Figure 14. Two-Stage Edge Division

As explained shortly, it is important to order edge vertices
during their storage; we use the location of the edge end-
points to compute an edge direction, and order the vertices
accordingly. The region-pair for each vertex also is ordered
according to this direction. We store all edge vertices,
whether or not they belong to a surface of interest. This
allows the polygonizer to produce geometry that is insensitive
to changes in the region-pair interest set. Storing all edge
vertices also permits computation of the region-set for a face
vertex, as described below. Edge vertices are shared between
adjoining tetrahedra; the presence of a previously computed
edge vertex can be determined from the edge and the hash
table.

As with edge vertices, face vertices are shared between
adjoining tetrahedra. Therefore, we first test if a face has
been previously processed; if not, we test if it contains an
intersection. A face contains no face intersection if it contains
only disjoint lines. To determine this, we traverse the edge
vertices of a face, in order, adding and removing vertex
region-value pairs from a stack, as shown below. If there are
only disjoint lines in the face, then, beginning with a vertex
startV, the stack will empty when the partner of startV is
reached, fill again, and will empty a second time upon the
return to startV.

1
2
3

4 5

startV
(stack empty)(stack empty)

partner

Figure 15. Determining if a Face Contains only Disjoint Lines

Our implementation accommodates any number of disjoint
lines within a face, provided there is no face intersection. If
an intersection exists, a face vertex is allocated and stored.
Because it is computationally expensive to locate the
intersection, we compute the location only if the face vertex is
an intersection of surfaces of interest. We follow the face
contour from an edge vertex v, continuing until a foreign
region is found. This is similar to other local methods
[Mortensen 1985], [Bajaj et al. 1988]. As shown below, left,
the face contour is surrounded by small triangles until region
3 (in this example) is encountered.

The small triangles enclosing the contour are each specified
by a directed edge, below, middle, that crosses the contour. A
directed edge implies a new triangle apex, whose region value
determines which of the new triangle sides becomes the next
directed edge. The initial directed edge spans the start vertex.
The contour follower terminates with a final triangle, below,
right, whose apex belongs to a foreign region; the face vertex
is located at the center of this triangle. So that this be within
ε of the actual intersection, the length of a small triangle side
(exaggerated below for illustration) should not exceed
(2√3)ε, assuming the final triangle contains the actual
intersection. A recursive contour follower, in which triangles
become increasingly smaller, may prove more accurate.

v

1

2

3

1
2

3

4

5

foreign
region

encountereddirected
edge

apex

p1 p2

tetrahedral
face

small
triangle

Figure 16. Following a Face Contour

For simple face topologies, as above, the choice of start vertex
is immaterial. For complex topologies, as below, some
vertices (e.g., v1 and v2) do not yield a face intersection. The
contour follower must recognize when it fails, and begin again
at a different edge vertex. Also, some vertices (v3 and v4, for
example) will yield different intersections; therefore searches
begin first from edge vertices that separate regions of interest.
This compromises our goal of a geometry independent of the
region-pair set, but, because we are limited to a single face
vertex, we prefer it be on a surface of interest.

v1

v2
v3

v4v5

v6

v7
v8

1
2

3
4

5 6

Figure 17. A Complex Face Topology

If the tetrahedron contains only disjoint face lines, as shown
below, left, the lines are connected to form one or more
disjoint polygons. As established in [Bloomenthal and
Ferguson 1994], each polygon is of three or four sides. So that
a polygon is properly associated with two regions (to provide,
for example, polygon color), the polygons must be
consistently oriented. We order each polygon so that, when
viewed from the lesser of the two regions it separates, its
vertices appear in clockwise order. The ordering begins with
an edge vertex that separates a region of interest and a
tetrahedral face that contains the edge vertex such that, if
traversed in a clockwise direction, the edge traverses from
lesser to greater region. We now proceed to the partner of
this vertex, with respect to the given face (see figure 15). The
partner becomes the ‘current’ vertex, and the face on the
other side of the edge containing the new current vertex
becomes the ‘current’ face. This step, similar to one described
in [Bloomenthal 1988], is iterated until the current vertex
becomes the start vertex. The process is repeated for those
edge vertices not yet assigned to polygons. An optimized
procedure could process those common cases typical of
conventional tetrahedral polygonization.

Figure 18. Polygon Formation

In the case of non-disjoint surfaces, there must be at least two
face vertices that separate regions of interest. We create an
inner vertex whose location is the average location of those
face vertices that separate regions of interest. Each face line,
together with this inner vertex, creates one triangle, as shown
above, right. Each triangle is ordered clockwise when viewed
from the lesser-valued of the two regions it separates.

A problem concerning face contours, which also affects
propagation, is the ‘loop.’ A face contour is looped if it enters
and exits the face along the same edge, as shown below, left.
As shown below, middle and right, looped intersections may
occur on edges of equal or differently valued corners, and
may be nested.

1
2

3

1
2
3

1
2

a loop

looped
intersections

Figure 19. Looped Intersections

Looped intersections are problematic because there is no face
vertex with which they can connect. They could be joined
together, yielding a line coincident with the cell edge; this can
duplicate polygons or align polygons with tetrahedral edges or
faces, resulting in a staircased tessellation. They could be
connected to a point on the face contour, preferably one that
is maximally distant from the cell edge; this is an

implementation complication we chose to avoid. Therefore,
we ignore looped intersections, effectively truncating the
surface, as illustrated below. Conventional polygonizers also
truncate loops if they occur between equi-valued corners.
Truncation can be arbitrarily large; when significant,
truncation is best mitigated by a smaller cell size.

Figure 20. Truncation of Large Loop

There are two problems whose remedy we postpone until all
cells are polygonized. The first concerns thin or small
triangles. Thin triangles are produced when a polygonizing
cell face is nearly tangential to the implicit surface; small
triangles are produced if a polygonizing cell corner is close to
the surface. Either triangle can occur when an inner vertex is
close to a face vertex or a face vertex is close to an edge vertex.
These triangles also occur in conventional polygonization and
can cause visualization artifacts. They can yield orientation
errors (i.e., the normal of the triangle can vary significantly
from the actual surface normal) if the triangle width is
comparable to ε, the accuracy of edge and face vertices. In a
post-polygonization step, each pair of connected vertices
whose distance is less than ε is replaced by the average of the
two vertices. Resulting degenerate triangles are removed.
Perturbation of cell corners, as suggested in [Moore and
Warren 1991], is another method to eliminate problematic
triangles.

The second problem concerns vertices on intersection edges.
Consider triangles t1, t2, and t3, which share an edge along the
intersection circle of the sphere-square, as shown below. For
smooth shading, each vertex requires a surface normal, but, in
this example, it is not possible to compute a single normal for
v because t1 and t2 require a right-facing normal, whereas t3
requires an upward-facing normal. To accommodate these
competing requirements, we produce coincident vertices
located at v, one for each different region-pair of the triangles
sharing v.

t1

t2 t3

v

Figure 21. Duplicated Vertices

6 Results

We first compare the performance of the non-manifold
polygonizer with a conventional polygonizer. For non-trivial
objects, both polygonizers devote the vast majority of their
time in evaluating the implicit surface function. Thus, we
compare the two polygonizers according to the number of
function evaluations. The non-manifold polygonizer
performs many more evaluations along a surface border,

where it must locate a face intersection. Because a
conventional polygonizer does not attempt to locate such
intersections, we compare the frequency of evaluations for
solid models only. This limits our consideration to the typical
cases of three and four edge intersections per tetrahedron.

We assume the non-manifold polygonizer uses n (the number
of edge sections, as described in section 5) = 16 and m (the
number of binary subdivisions) = 4, and that the
conventional polygonizer uses m = 8, so that their vertex
accuracies are equal. We ignore function evaluations for
corners of the tetrahedra. which should be the same for both
polygonizers. For three edge vertices per tetrahedron, the
conventional polygonizer requires (3×8) = 24 evaluations of
f, whereas the non-manifold polygonizer requires
3×16+3(16+4) = 108 evaluations of freg. For four edge
vertices, the conventional polygonizer requires (4×8) = 32
evaluations, and the non-manifold polygonizer requires
2×16+4(16+4) = 112 evaluations. Thus, the non-manifold
polygonizer requires about four times as many function
evaluations as does the conventional polygonizer.

Our first example blends a sphere and a square. Pseudo-code
for the region value and the surface interest are given below.

Sigmoid (d) {
 if abs (d) > 1
 then return 0
 else return 1-(4d6-17d4+22d2)/9
 (a blend function from [Wyvill et al. 1986])

Saucer (p) { return Sigmoid (√px
2+py

2/7)/3 }

Region (p)
 if not InsideCube (p) then return 0
 if Saucer (p) > abs (pz) then return 1
 if pz > 0 then return 2 else return 3

Interest (region-pair)
 if regionPair = (1, 2) then return (true, red)
 if regionPair = (1, 3) then return (true, blue)
 if regionPair = (2, 3) then return (true, green)
 return (false)

Conventional polygonizers calculate surface normals by
approximating the gradient, ∇f, of the implicit surface
function. Our region function is integer valued, however, and
cannot yield a gradient. Hence, we allow the software client
to provide a real-valued function g from which the gradient
can be calculated. For non-manifold polygonization, the
normal depends not only on vertex location but also on the
region-pair being separated. For a fixed region-pair, g should
be a continuous function in the neighborhood of the surface
separating that region-pair. Usually g can be defined in terms
of those functions that underlie freg, as shown below:

g (p, regionPair)
 if regionPair = (1, 2) then return -pz-Saucer (p)
 if regionPair = (1, 3) then return pz-Saucer (p)
 if regionPair = (2, 3) then return -pz

The surfaces are rendered transparently to demonstrate that
surfaces internal to the volume have been trimmed.

Figure 22. Saucer

The second example is a sphere embedded in a square, as in
figure 4, with a smaller sphere removed. We observe that,
whereas two adjacent regions of space define a surface, three
adjacent regions define a curve. For example, in figure 4 the
equator of the sphere is the intersection of regions 1, 3, and 4,
and the boundary of the square is the intersection of regions
2, 3, and 4. These curves intersect polygonizing cells at cell
faces, and are readily approximated simply by connecting face
vertices. The boundary and intersection curves below are
shown as thin (blue, yellow, cyan, and magenta) lines.

Figure 23. Object with Boundary and Intersection Curves

Our last example blends a sphere to a bicubic patch according
to the following definition.

Region (p)
 if Beyond (p, patch) then return 0
 if Sigmoid (p) > abs (DistanceToPatch (p, patch)) return 1
 if DistanceToPatch (p, patch) > 0 return 2 else return 3

The distance between p and the closest point on the patch,
P(s, t), is computed numerically. s and t are initialized from
an approximating triangle mesh and are refined by projecting
the vector from P(s, t) to p onto the tangent plane at P(s, t), as
shown below. If the closest point belongs to the patch border,
p is regarded as ‘beyond’ the patch. Otherwise, the signed
distance indicates whether p is above or below the patch.

0
1

2

3

p

(∆s, ∆t)P
P’

Figure 24. Region Definition for Blend to Patch

The shaded images are produced with transparency.

Figure 25. Blend to Patch

7 Conclusions

We have presented a new method to express and polygonize
non-manifold implicit surfaces. This method permits a simple
expression and evaluation for parametric surfaces combined
with and trimmed against implicit volumes. These non-
manifold implicit surfaces are defined by multiple regions of
space, unlike the binary regions that typically define implicit
surfaces. Included with the object definition is a list of region
pairs whose separating surfaces are of interest. When
polygonized, non-manifold surfaces may have borders and
intersections.

The use of multiple regions significantly complicates the
polygonizer. In particular, the accurate polygonization of
surface borders requires vertices internal to faces of the
polygonizing cell, which in turn require multiple intersections
per cell edge. This leads to the need for multiple, disjoint

surfaces. The accurate polygonization of surface intersections
requires vertices fully internal to the polygonizing cell. This
additional complexity, however, is exercised only in the
relatively few cells that contain borders or intersections.

The formula used to define non-manifold implicit surfaces do
not require extraordinary numerical stability because, unlike
constructive geometric methods, the non-manifold implicit
surface is not computed as a series of intermediate surfaces,
nor are primitive intersections explicitly calculated.

The present polygonizer cannot accommodate arbitrary
complexity per tetrahedron, although it does accommodate an
arbitrary number of disjoint surfaces. Non-disjoint surfaces
are limited to a single intersection per face and a single
internal vertex per polygonizing cell. Future work might
include the accommodation, within a single polygonizing cell,
of disjoint surfaces and multiple face and multiple internal
intersections. Other future work might include improved
boundary accuracy and reduced truncation, as well as
additional consideration of adaptive methods.

Ray-tracing can render non-manifold, implicitly defined
shapes; indeed, many ray-tracers return an integer identifier
for a particular object or region of space, usually to accelerate
performance or invoke anti-aliasing. We prefer, however, a
concrete representation of the object. We have yet to
determine the power of the present method with respect to
shape specification and editing. Considering the flexibility of
non-manifold surfaces, continued work on the present
method seems warranted.

Acknowledgements

We thank Przemek Prusinkiewicz for his insight and
guidance. We also thank Dennis Arnon, Debbie Brooks,
Tony DeRose, Adam Finkelstein, Pat Hanrahan, Paul
Heckbert, Ken Shoemake, and Joe Warren for their
comments. We are indebted to the University of Calgary and
to Xerox Corporation for their support of this research.

References

E. Allgower and K. Georg, Numerical Continuation Methods,
an Introduction, Springer-Verlag, 1990.

C. Bajaj, Surface Fitting with Implicit Algebraic Surface
Patches, in Topics in Surface Modeling, H. Hagen. ed., SIAM
Publications, 1992.

J. Bloomenthal, Polygonization of Implicit Surfaces,
Computer Aided Geometric Design, Nov. 1988.

J. Bloomenthal and K. Ferguson, Polygonization of Non-
Manifold Surfaces, Research Rep. 94-541-10, Dept. of
Computer Science, The University of Calgary, June 1994.

G. Farin, Curves and Surfaces for Computer Aided Geometric
Design, a Practical Guide, Academic Press, New York 1988.

A. Koide, A. Doi, and K. Kajioka, Polyhedral Approximation
Approach to Molecular Orbital Graphics, Journal of Molecular

Graphics 4, 1986.

M. Mäntylä, An Introduction to Solid Modeling, Computer
Science Press, Md., 1988.

J. Miller, Sculptured Surfaces in Solid Models: Issues and
Alternative Approaches, IEEE Computer Graphics and
Applications, Dec. 1986.

D. Moore and J. Warren, Mesh Displacement: An Improved
Contouring Method for Trivariate Data, Rice University
Technical Rep. TR91-166, Sept. 1991.

M.E. Mortensen, Geometric Modeling. Wiley and Sons, New
York, 1985.

M. Muuss and L. Butler, Combinatorial Solid Geometry, B-
Reps, and n-Manifold Geometry, in Computer Graphics
Techniques: Theory and Practice, D. Rogers and R.
Earnshaw, eds., Springer Verlag, New York, 1990.

P. Ning and J. Bloomenthal, An Evaluation of Implicit
Surface Tilers, IEEE Computer Graphics and Applications,
Nov. 1993.

A. Paoluzzi, F. Bernardini, C. Cattani, and V. Ferrucci,
Dimension-Independent Modeling with Simplicial Complexes,
ACM Trans. on Graphics 12, Jan. 1993.

A. Rockwood and J.C. Owen, Blending Surfaces in Solid
Modeling, Proc. of SIAM Conf. on Geometric Modeling and
Robotics, G. Farin, ed., Albany New York, 1985.

J. Rossignac and M. O’Connor, SGC: a Dimension-
Independent Model for Pointsets with Internal Structures and
Incomplete Boundaries, Geometric Modeling for Product
Engineering, Elsevier Science, 1990.

J. Rossignac and A. Requicha, Constructive Non-Regularized
Geometry, in Beyond Solid Modeling, special ed. of Computer
Aided Design, 1991.

K. Weiler, Topological Structures for Geometric Modeling,
Ph.D. dissertation, Dept. of Computer and Systems
Engineering, Rensselaer Polytechnic Institute, Aug. 1986.

G. Wyvill, C. McPheeters, and B. Wyvill, Data Structure for
Soft Objects. Visual Computer 2, 4, Aug. 1986.

