
An Evaluation of Implicit Surface Tilers

Paul Ning
Stanford University

Jules Bloomenthal
Xerox PARC

Abstract
In recent years, numerous techniques have been developed
for the polygonization of implicit surfaces. This article
reviews the principal algorithms and provides a framework
for identifying their conceptual similarities as well as their
practical differences. Particular attention is devoted to the
much discussed problem of topological ambiguity, with
solutions analyzed according to their consistency and
correctness. Included in this evaluation are implementation
suggestions for various application requirements.

1 Introduction
Implicit surface polygonization is a technique useful for
visualizing implicit models and volumetric data. In this
review, we evaluate the principal polygonization algorithms
according to topological issues, implementation complexity,
and polygon count. The algorithms we discuss are not new;
we hope, however, that the organization of our
presentation, which emphasizes practical considerations,
will provide a helpful guide to users and implementors of
these techniques.

A primary goal of our discussion is to clarify the differences
among the existing techniques. We emphasize topological
issues because they most clearly discriminate the
algorithms. Our discussion also relates topology to the
practical issue of implementation complexity. And we
consider polygon count because of its significance for
interactive applications.

Kalvin provides another review of polygonization
algorithms [Kal92]; in our presentation we focus on
practical concerns and offer a different interpretation of
topological issues.

1.1 Implicit Surface Tilers

An implicit surface is defined as those points pi = (xi, yi, zi)
such that f(pi) = 0, for some function f. Methods that
construct a polygonal approximation to this surface are
known as implicit surface tilers.1 Several recently
developed tilers construct the approximation by
partitioning space into non-overlapping polyhedral cells
within which the implicit surface is represented by one or

more polygons. For each cell, the function f is evaluated
(or sampled) at each of the cell vertices. The objective of an
implicit surface tiler is to locate intersections of the implicit
surface with the cell edges and to connect these
intersections into polygons or triangles.

We consider those tilers that operate on fixed size cells (see
[Blo88][HW90][Nin92][MS93] regarding adaptively sized
partitionings) and confine our review to those tilers that
partition space into cubes, although many of our
observations apply to arbitrary cell shapes. Finally, we
restrict our discussion to the usual case in which (possibly
non-planar) polygons are converted to triangles.

1.2 Data Sources

The source of the function f is a practical matter that
distinguishes two classes of tilers, those operating on
discrete data and those operating on continuous data.
Discrete data are available only at cell vertices; these data
are usually in the form of experimental or computed
volumetric datasets (such as in medical images or discrete
grid simulations), where polygonization is a useful volume
visualization technique. Continuous data may be obtained
exactly at arbitrary spatial positions; these data are usually
associated with implicitly defined geometric models (such
as algebraic surfaces), where polygonization is a useful
technique to obtain a convenient object representation.

A practical consequence of this distinction relates to the
accuracy of the polygonal surface. For discrete data, the
behavior of the function between samples must be
approximated by an interpolant; for continuous data,
however, no such interpolation is required. Thus, the
location of edge/surface intersections must be
approximated (e.g., by linear interpolation) in the discrete
case but may be determined with arbitrary resolution (e.g.,
by binary subdivision) in the continuous case.

1 They are also known as isosurface generation algorithms
when applied to varying values of the function f. The set of
points pi such that f(pi) = c is the isosurface for the
isocontour value (or isovalue) c.

A second practical consequence relates to cell identification.
In general, it is desirable to minimize the number of cells
processed by considering only those that contain portions of
the surface. The discrete data tiler can pre-sort its cells
according to their minimum and maximum function values.
Should an offset (isovalue) be applied to the function, those
cells needing triangulation are quickly identified from the
sort [WvG92]. In the continuous case, function evaluations
are computationally expensive; thus obtaining all cells in a
given volume for pre-sorting is impractical. Instead,
continuous data tilers begin with some initial cell(s) and
track the surface by selectively propagating new cells; this
technique is known as numerical continuation [AG90].

1.3 Cubical Cell Polygonization

Most tiling methods developed to date partition space into
cubical (or rectilinear) cells [WMW86][LC87][Blo88]
[Bak89][Wal91]. The regularity of the cubical lattice is
particularly appropriate for both discrete and continuous
data. For discrete data, the regular grid is compatible with
most scanning hardware used to gather samples. For
continuous data, the regular grid permits a simple integer
indexing scheme for cells so that the tiler will not propagate
cells into previously examined locations. Unfortunately,
however, the cubical cell is known to be susceptible to
topological ambiguity. Without a careful polygonization of
each cell, improperly closed surfaces (surfaces with ‘holes’)
can result.

The tiling algorithms compute an edge/surface intersection
for each edge that joins oppositely signed cell vertices.
Intersections within each cell face are then connected into
face contours (line segments) that are combined
sequentially to form (possibly non-planar) polygons. This
polygon tracing step is usually followed by conversion of
the polygon into triangles.

The foregoing steps make two assumptions regarding the
behavior of the implicit surface, although the actual surface
can, in general, have arbitrary complexity within the cell.
First, exactly one intersection exists on an edge connecting
oppositely signed cell vertices and no intersections exist
otherwise. Second, the intersection of the surface with a
face is topologically equivalent to a line segment (or
segments) joining the edge intersections. These
assumptions, which simplify implementation and are
common to all of the methods we discuss, are reasonable
for high sampling resolutions (in other words, the
functional variation must be small with respect to cell size).
Examples that violate these assumptions include a surface
with multiple zero crossings along an edge, and a surface
that produces a closed contour in the interior of a face.

1.4 Overview

In the next section we examine the fundamental elements
of topological ambiguity and review several proposed
methods for disambiguation in terms of consistency and

correctness. We then present several criteria useful in
evaluating implicit surface tilers, including complexity of
implementation and triangle count of the surface. Finally,
we offer suggestions for the most appropriate techniques
under different sets of application requirements.

2 Topological Ambiguity
Figure 1 illustrates an ambiguity occuring on the face of a
cube; given the diagonal arrangement of vertex polarities, it
is unclear whether the edge/surface intersections should be
connected as shown on the left or on the right.2 A basic
assumption is that one of these is topologically equivalent
to the actual surface.

Figure 1: An ambiguous face.

In three dimensions, such an ambiguity occurs whenever a
cube face includes two sets of diagonally opposed like-
polarity vertices. Unwanted artifacts of the ambiguity are
visible when neighboring cells make inconsistent
connectivity decisions for their common face, as shown in
Figure 2. As noted in [Duu88], these topological
inconsistencies are manifested as holes in the surface, which
can be quite objectionable in computer imagery.

Figure 2: Ambiguous cube configuration
(inconsistent polygonization by neighboring cells).

2.1 Consistency vs. Correctness

Clearly, topological consistency is paramount because it is
needed to prevent the appearance of easily detected
artifacts. Beyond topological consistency, it is also desirable
to achieve topological correctness, i.e. faithfulness to the
geometry of the function. For discrete data, correct
topological decisions must match the behavior of some
assumed interpolant and, for continuous data, the decisions
must correspond to the true functional variation. Thus,
correctness implies that multiple, data-dependent
topologies be allowed for each configuration of cell vertex
polarities.

2 In this and subsequent figures, we display positive cell
vertices as solid black dots and surface vertices as open
circles; negative cell vertices are not highlighted.

It may be argued that, in some instances, correctness is not
a significant issue provided consistency is attained. Indeed,
the difference between a correct and incorrect
disambiguation decision affects only a small region on the
order of the cell size (Figure 3). Provided that topological
decisions are consistent, the resulting surfaces are well-
behaved; only if the ambiguous region is magnified, or if it
corresponds to an interesting portion of the surface, does
correctness become significant.

Figure 3: Two conflicting polygonizations (2-D).

In the following section, we discuss three classes of
disambiguation techniques: cell decomposition, preferred
polarity, and topology inference. These are reviewed with
particular emphasis on their consistency and correctness
properties.

2.2 Disambiguation Strategies

2.2.1 Cell Decomposition

Cell decomposition methods attempt to resolve ambiguity
by partitioning the cube into unambiguous sub-cells. New
edges are introduced and, consequently, more triangles may
be created.

A tetrahedron has the property that its negative vertices
may always be separated from its positive vertices by a
single plane; thus an unambiguous polygonization of a
tetrahedron always exists. By decomposing the cube into
tetrahedral sub-cells and polygonizing the sub-cells,
ambiguous cube types are resolved [Blo88][PT90]
[HW90][Nie91]. As long as neighboring cubes are
decomposed so that they share common tetrahedral faces at
their boundaries, a consistent polygonization will result.
Correctness, however, is ignored because, as discussed in
Section 4, the orientation of the decomposition imposes an
arbitrary choice on the direction of the surface contour.

Another decomposition method is recursive subdivision of
the cube into eight smaller cubes [WvG90]. Unfortunately,
the number of recursions needed to remove ambiguities
may be arbitrarily large. For example, the face in Figure 4
(left), upon subdivision, can yield either an unambiguous
result (middle) or an ambiguous result (right), which can
perpetuate the ambiguity indefinitely. This only postpones
the disambiguation decision until some maximum recursion
level is reached (although beyond a certain level any
decision is visually inconsequential).

Figure 4: Recursive subdivision in two dimensions.

2.2.2 Preferred Polarity

The direction of contours in ambiguous faces may be
chosen based on the polarity of the four face vertices; i.e.,
one may elect to always separate the positives (and join the
negatives) or always separate the negatives (and join the
positives). This is effectively the result of algorithms in
[Blo88][Bak89][WJ90].

In [Blo88][WJ90] a polygon tracing technique is employed
that connects one edge intersection to the next by turning
clockwise along a face’s boundary, with an initial direction
towards the positive end of that edge. It can be shown that
this rule always separates the positive vertices in an
ambiguous face. In [Bak89] positive region connectivity is
defined in a stricter sense than negative region connectivity
so that, once again, positive vertices in an ambiguous face
are always separated.

All of these methods make the arbitrary choice of positive
vertex separation. Neighboring cells will produce the same
contours in their common face, maintaining topological
consistency. Since the choice is arbitrary (indeed, one may
select negative vertex separation everywhere instead) no
attempt is made to achieve topological correctness.

2.2.3 Topology Inference

Rather than decompose the cell or select a preferred
polarity, some methods attempt to infer the correct
topology of an ambiguous face from the data values, and
then construct the appropriate contours for the face. The
three principal inference schemes are face center
resampling, bilinear contours, and gradient heuristics. All of
these methods make consistent inferences across adjoining
cells and, therefore, no holes result. Correctness is more
difficult to achieve and depends on the particular inference
scheme.

The simplest scheme is to resample at the center of the face
and join those vertices that have the same polarity as the
new sample. For continuous data, this requires an extra
evaluation of the function; for discrete data, this involves an
interpolation (usually the facial average [WMW86][WvG90]
[Wal91]). This is not, however, guaranteed to make the
correct decision, as a simple example demonstrates (Figure
5). Although the value at the face center indicates that the
positive vertices should be joined, they are, in fact,
topologically separated.

True contour

Decision by face
center resampling

Figure 5. Face center resampling (example of failure)

The bilinear contours method [Nin91][Nat91][NH91]
assumes a bilinear interpolant in each face of the cube. The
face contours are hyperbolic and their directions are easily
obtained from the face samples. Since the interpolation
employs only the four face vertices, consistency is insured
across neighboring cells. The decision is correct if bilinear
interpolation is an accurate estimate of the actual function’s
behavior between samples. For continuous data,
correctness is highly data-dependent. For discrete data,
where an interpolant must be assumed in any case, the
bilinear method is arguably a good choice, and agrees
within the face with the trilinear kernel commonly
employed for volumetric reconstruction (the trilinear kernel
also is used in [Nat91] to examine the surface internal to the
cube).

Finally, gradient heuristics have also been developed to
infer topology [WvG90]. This technique incorporate vertex
gradients as well as vertex samples in order to fit a
quadratic estimate of the function across the ambiguous
face. This general quadratic may produce hyperbolic
contours as in the bilinear approach, but tries to match the
gradient data as well. Consistency is again guaranteed
because the same disambiguation decision is made by
adjoining cells. Correctness is usually achieved if the
underlying function is quadratic, but is not assured in
general.

2.3 Implementation Complexity

There are numerous aspects to implementation complexity.
We do not consider output format (in terms of polygons
only or points/polygons) or data storage (in terms of
hashing versus directly referenced) because these issues are
independent of the particular tiling technique. Rather, we
focus on the method of polygon generation, which is related
to the previously discussed issues of consistency and
correctness.

As mentioned, each edge of a cell has at most one
intersection with the surface; these intersections are
connected into polygons either by manual analysis of the
polarity configurations [LC87] or by some algorithm as
described above. For either approach, the polygon
connectivity may be precomputed and stored in a
connectivity table for fast access during data processing
[LC87]. For the cube, the table consists of polygon
specifications for each of 256 cube types (a cube type is
defined by the polarities of the cube’s eight corners).

As noted in [Bak89], the connectivity table in [LC87] is
susceptible to topological inconsistency due to the
symmetry operations used in its construction. Using
preferred polarity [Blo88][Bak89][WJ90], however, a table

can be constructed that guarantees consistency.

Topology inference methods [WMW86][WvG90][NH91]
[Nat91][Nin91][Wal91] attempt to achieve correctness in
addition to consistency; to accommodate the data-
dependent topological decisions, however, the connectivity
table must allow multiple entries per cube type.

In summary, consistency may be achieved with a single-
entry cubical table (a unique topology for each cube type)3,
whereas correctness requires a multi-entry cubical table
(multiple topologies for each cube type). The higher
complexity of multi-entry tables suggests that correctness
should be a goal only when this level of accuracy is required
by the application.

3 Evaluation of Tilers
We have reviewed the primary cubical cell polygonization
algorithms and classified them according to disambiguation
strategy. In this section, we discuss several important
practical criteria for comparing the techniques and we offer
suggestions for different sets of application requirements.
In subsequent sections, we provide more detail on the
selected schemes.

3.1 Evaluation Criteria

As minimum requirements for recommended techniques
we insist on topological consistency, efficient run-time
execution, and automatic vertex connectivity. Topological
consistency insures that contours in ambiguous faces are
agreed upon by adjoining cubes, thus avoiding holes. For
good run-time speed, we restrict our attention to algorithms
where the vertex connectivity is precomputed and stored in
a table for fast access (efficiency is less of a consideration
for continuous functions whose evaluation time can easily
dominate the polygonization process); a table
implementation is compatible with all of the techniques
discussed. We include automatic connectivity design (i.e.
algorithmic construction of the connectivity table) as a
desirable feature because manual case entry may be tedious
and prone to error.

With these minimum requirements as a basis, we consider
three additional issues: implementation complexity, triangle
count, and degree of disambiguation. Implementation
complexity is gauged by the size of the connectivity table.
Triangle count becomes an important issue for interactive
applications. Degree of disambiguation indicates whether
topological correctness is sought in addition to topological
consistency.

Other than topological considerations, we do not undertake
a comprehensive comparison of the visual quality of
surfaces that result from the different tiling methods.
Rather, we focus on those objective issues that most clearly

3 Tetrahedral decomposition requires a single-entry table
describing the 16 tetrahedral types.

discriminate existing algorithms. Visual quality is difficult
to define and measure, and a useful comparison requires
careful consideration of many factors (such as renderer
implementation, camera position, shading model, and
intended application) that are independent of the tiler.

3.2 Overview of Techniques

For the simplest implementation of topologically consistent
surfaces, we find tetrahedral decomposition to be the most
attractive. In applications where triangle count is an
important issue, we recommend a single-entry cubical table
method that also satisfies consistency but produces
considerably fewer triangles. Finally, if consistency is
insufficient and correctness is also desired, the solution is an
automatically generated multi-entry cubical table.

A comparison of the triangle counts for these three methods
is shown in Figures 6 and 7; details of the methods are
given in later sections. Also included are statistics for the
widely used ‘marching cubes’ algorithm [LC87], which
generates the fewest triangles but does not produce
topologically consistent surfaces.

Figure 6 displays the number of triangles generated for
each of the 256 cube types. In the lower portion of the
figure, the relative frequencies of cube types for two real
datasets are shown. Figure 7 displays the average number
of triangles generated when the distribution of cube types is
uniform, as well as for the two real datasets. Note that the
distribution of cube types in ‘Air jet’ and ‘Hand’ is far from
uniform; the types are concentrated in those indices that
produce lower numbers of triangles. This skews the
average number of triangles towards lower numbers as
compared to the uniform distribution. Rendered surfaces
from the example datasets are shown in Figures 8 and 9.

10

8

6

4

2

0

0

1

0

1

2550 31 63 95 127 159 191 223

Air jet

Hand

N
um

be
r

of
 tr

ia
ng

le
s

R
el

at
iv

e
fr

eq
ue

nc
y

(n
or

m
al

iz
ed

)

tetrahedral
single-entry cubical
multi-entry cubical

Cube type (permuted)

’marching cubes’

Figure 6. Triangle count and relative frequency vs. cube type
(the 8-bit indices have been permuted so that higher
triangle counts tend to appear at larger indices; cells
that do not contain the surface are not considered)

0

2

4

6

8

Uniform Air jet Hand

tetrahedral

multi-entry cubical
single-entry cubical

Distribution of cube types

’marching cubes’

A
vg

. n
um

be
r

of
 tr

ia
ng

le
s

(p
er

 c
el

l)

Figure 7. Avg. triangle count vs. distribution of cube types
(averages taken over cells that contain the surface)

Figure 8: Air jet.

Figure 9: Hand.

4 Tetrahedral Decomposition
A disambiguation strategy that enjoys the advantages of
cubical partitioning and maintains topological consistency
is the decomposition of the cube into tetrahedra. Because a
tetrahedron’s negative vertices can be separated from its
positive vertices by a single plane, no ambiguities are
possible when the tetrahedron is polygonized.4 For any
tetrahedron, the polygon(s) may be generated at run-time
by algorithm [Blo88] or determined from a precomputed
table of 16 tetrahedral types, which are given in Figure 10.
None of the cases is ambiguous.

{}

{ab, bc, bd}

{ad, bd, bc, ac}

{ab, ac, cd, bd}

{ab, ac, ad}

{ab, ad, ac}

{ab, ad, cd, bc}
{ab, bd, cd, ac}

{ab, bd, bc}
{cd, ac, bc}

{ac, cd, bc}

{ad, ab, bc, cd}

{ad, ac, bc, bd}

{bd, ad, cd}

{bd, cd, ad}

a

b c

d

case {}

case {d}
case {c}

case {cd}

case {b}

case {bd}
case {bc}

case {bcd}

case {a}

case {ad}
case {ac}

case {acd}

case {ab}

case {abd}

case {abc}

case {abcd}

{}

surface vertex order
(indexed by edge)

positive
vertices

Figure 10: Tetrahedral polygonization.

Without requiring additional cell vertices, the cube may be
decomposed into five [PT90][HW90][Nie91] or six [Nie91]
tetrahedra, as shown in Figure 11. These decompositions
introduce diagonals on the cube faces, thus determining the
resulting face contours. Consider the two faces in Figure
12; although their polarity configurations are the same, the
orientation of the diagonal affects the connectivity of the
surface vertices. Because this orientation is arbitrarily
determined by the decomposition, topological correctness is
not provided.

(a) (b)

Figure 11: Decomposition into (a) five and (b) six
tetrahedra.

Figure 12: Effect of diagonal orientation on face contours.

In order to maintain topological consistency, the orientation
of the five-tetrahedral decomposition must alternate

4 For this reason, the tetrahedron is commonly used as the
partitioning cell in simplicial continuation methods [AG90].

between face-adjacent cubes (Figure 13). This insures that
the diagonal introduced on a cube face agrees with that of
its neighbor.

lbn

rbn

lbf
rbf

ltf
ltn

rtf

rtn

lbn

rbn

lbf

rbf

ltf
ltn

rtf

rtn

Figure 13: Alternate orientations of five tetrahedra.
(l, r, b, t, n, and f indicate left, right, bottom, top. near, and

far, respectively)

The introduction of diagonal edges may produce a higher
resolution surface by increasing the number of facets in the
surface approximation (see Figure 14). As plotted in
Figures 6 and 7, tetrahedral decomposition yields over
twice as many triangles as cubical techniques (the
tetrahedral data for these figures are based upon the five-
decomposition).

Figure 14: Additional facets produced by five-tetrahedral
decomposition.

5 Single-Entry Cubical Table
Tetrahedral decomposition is simple to implement, but for
applications in which reduced triangle count is more
important than increased surface resolution, cubical table
methods are recommended. In this section we discuss a
topologically consistent, single-entry cubical table based on
preferred polarity disambiguation [Blo88][Bak89][WJ90].

The idea is to impose arbitrary and consistent face decisions
while still polygonizing based on the original cubical
intersections. Unlike tetrahedral decomposition, new
vertices along the face diagonals are not introduced. As
discussed previously, a simple way to do this is to always
separate the positive vertices. Thus, for each of the 256
cube types a unique polygonization may be precomputed
and stored as a single entry.5

5 An interesting observation is that a single-entry cubical
table can also be derived from the topological decisions
imposed by the tetrahedral decomposition. For the five-
tetrahedral decomposition, two such tables would be
necessary, however, to accommodate the alternating
orientations of the tetrahedra (Figure 13).

The construction of the connectivity table is algorithmic
but, for faster operation, actual triangle generation employs
only lookup. Face contours are joined as in [WMW86],
forming n-sided polygons. These are, in general, non-
planar and must be triangulated for display. From the
Euler relation, one can show that an n-sided polygon may
be decomposed into n-2 triangles. Naive application of
such a triangulation, however, may result in a new edge in a
face of the cube, thus violating the contour decision already
made for that face (see Figure 15a). In these instances, the
introduction of a centroid allows a valid triangulation into n
triangles (see Figure 15b). The centroid is guaranteed to lie
in the interior of the cube so no invalid edges are created.
Note that the introduction of an additional vertex creates
two more triangles but should still produce fewer triangles
than tetrahedral decomposition, which adds as many as
seven new points.

Figure 15:
(a) Triangulation that violates face contour decision.

(b) Use of centroid for valid triangulation.

The cost of two additional triangles is more significant for
small n, so it is desirable to avoid using a centroid except for
large n. As is shown in the Appendix, for n=4 and n=5
one can always safely decompose the n-sided polygon into
n-2 triangles with a fixed rule and, for n ≥ 6 a centroid is
required; this is the strategy that we suggest for the single-
entry cubical table. It is interesting to compare this
algorithmic method to the manual case analysis of
‘marching cubes,’ which always converts n-sided polygons
to n-2 triangles. From Figure 7 we see that, if the
distribution of cube types is uniform, the automated
centroid method creates 33% more triangles than manual
case analysis; for the example datasets, however, the two
methods produce nearly the same number of triangles. For
all distributions, the single-entry cubical table produces
considerably fewer triangles than tetrahedral
decomposition.

The technique of tracing polygons from face contours has
been used by numerous authors [WMW86][NH91][Wal91].
There are slight differences, however, in their triangulation
techniques. Wyvill [WMW86] employs centroids for n ≥ 4.
Nielson [NH91] manually designs triangulations with n-2
triangles, where possible, and n triangles otherwise; instead
of introducing a centroid, a linear interpolation between
intersections of hyperbolic asymptotes is used. Wallin
[Wal91] implements a hybrid technique that uses existing
vertices until an inconsistency requires the computation of a
centroid for the remaining vertices.

6 Multi-Entry Cubical Table

If topological correctness is required, data-dependent
decisions must replace arbitrary topological decisions.
Thus, the connectivity table must allow each ambiguous
face to be disambiguated with either of the two face contour
orientations, with the decision made at run-time. As shown
in Figure 16, all six faces of the cube may be simultaneously
ambiguous. Therefore, as many as 64 different connectivity
topologies must be included for each arrangement of cube
polarities. This may be implemented as a table with
multiple entries per cube type [WvG90][NH91].

Figure 16: Cube with six ambiguous faces.

The construction of the table is similar to that of the single-
entry table; polygons are traced and triangulated as before,
but repeated for each combination of face contour
decisions. During processing of each cube, the table is
accessed according to the cube’s vertex polarities; for
ambiguous cube types, topological decisions from the
ambiguous faces select which of the multiple entries apply.
Face disambiguation methods that are arbitrary (tetrahedral
decomposition, preferred polarity) are not appropriate since
they do not consider correctness. Instead, one of the
topology inference schemes (face center resampling,
bilinear contours, gradient heuristics) should be used.

The multi-entry nature of the table implies that more than
one triangle count may be associated with each cube type.
In Figures 6 and 7, we assume that all topologies for any
cube type are equally likely and use their average triangle
count for the 8-bit index. It is evident that the multi-entry
table generates slightly higher triangle counts than single-
entry or ‘marching cubes’ when the distribution of cube
types is uniform, but yields nearly an identical number for
the example datasets.

7 Summary and Conclusions

We have reviewed the principal implicit surface
polygonization methods and evaluated their merits
according to topological disambiguation, implementation
complexity, and triangle count (summarized in Figure 17).
We have devoted special attention to the ambiguity
problem and analyzed proposed solutions in the context of
consistency and correctness.

low complexity high complexity

decomposition

multi-entry
cubical

tetrahedral single-entry
cubical

co
rr

ec
t

to
po

lo
gy

co
ns

is
te

nt
to

po
lo

gy

Figure 17: Evaluation summary
(size of shaded triangles indicates relative triangle count)

We have argued that consistency suffices for many
purposes, and is achievable with single-entry tetrahedral or
cubical tables. For those situations requiring correct
disambiguation, run-time computation of topological
decisions is needed to index a multi-entry table. For
discrete datasets, correctness is only as accurate as the
assumed interpolant and, for continuous datasets,
correctness is not generally guaranteed.

For each of these techniques, polygon connectivity can be
algorithmically generated and stored in a table for run-time
access; for the cubical table methods, manual case analysis
is avoided with only a slight increase in triangle count.

Appendix
Naive triangulations of polygon traces may create line
segments in cube faces that are invalid face contours, i.e.,
that do not agree with the topological decision made for
that face (see Figure 15a). In this appendix we demonstrate
that a valid, fixed triangulation of an n-sided polygon is
possible for n=4 and n=5, but not for n=6. This
motivates the use of original vertices only for n < 6 (yielding
n-2 triangles) and the introduction of a centroid for n ≥ 6
(yielding n triangles).

Polygons are constructed by tracing contour segments along
the faces of the cube. There are only three basic face
contour topologies (Figure A-1), and the tracing algorithm
never traces consecutively two segments from the same face
(a trace may cross the same face later, however).

(a) (b) (c)

Figure A-1: Face contour topologies

We claim that any 4- or 5-sided polygon may be ‘safely’
triangulated as shown in Figure A-2 and argue by
contradiction. Suppose that such a triangulation is invalid.
This means that one of the internal segments, say x, lies
completely in a face but is not a valid face contour. Then,
since a and b are face contours and also lie in a face, a-b-x

defines the cyclical intersection of three different faces, and
therefore must be positioned in a corner of the cube (Figure
A-3). But if x is not a valid face contour, the face that
contains x has two surface intersections that are not joined,
so its topology must be that of Figure A-1c. The resulting
4-sided partial polygon requires at least two more segments
to close it, implying that n ≥ 6 and contradicting the
assumption that n=4 or 5.

a

b
x

a

b
x

Figure A-2: Triangulation of 4- and 5-sided polygons

xb

a

Figure A-3: Implication of 4- and 5-sided violation

To see why a fixed triangulation for n=6 is not always
valid, consider the three candidate triangulations in Figure
A-4. For each, an example is given that shows how an
invalid face contour may be created. Note that the hexagon
may be triangulated properly by candidates b or c if a
variable assignment of vertices is allowed (Figure A-5). We
forego this option, however, in favor of implementation
simplicity by employing centroids for all 6-sided polygons
(and n > 6).

x

x

x

x

x

x

(a)

(b)

(c)

Figure A-4: Candidate triangulations of 6-sided polygon

x

x

Figure A-5: A valid triangulation of 6-sided polygon

Acknowledgments
Paul Ning gratefully acknowledges funding by NASA
under grant NCA 2-579, including support from the NASA
Ames Numerical Aerodynamics Simulation Program and
the NASA Ames Fluid Dynamics Division, and by NSF
under grant ECS 8815815.

We thank Ram Subbarao and Brian Cantwell for providing
the air jet data.

References
[AG90] Allgower and Georg, ‘‘Numerical Continuation
Methods, an Introduction,’’ Springer-Verlag, 1990.

[Bak89] H.H. Baker, ‘‘Building Surfaces of Evolution: The
Weaving Wall,’’ International Journal of Computer Vision,
vol. 3, pp. 51-71, 1989.

[Blo88] J. Bloomenthal, ‘‘Polygonization of Implicit
Surfaces,’’ Computer Aided Geometric Design, vol. 5
(1988), pp. 341-355.

[Duu88] M.J. Duurst, ‘‘Additional Reference to Marching
Cubes,’’ Computer Graphics, vol. 22, no. 2, pp. 72-73, April
1988.

[HW90] M. Hall and J. Warren, ‘‘Adaptive Polygonalization
of Implicitly Defined Surfaces,’’ IEEE Computer Graphics
and Applications, 10(6), Nov. 1990, pp. 33-42.

[Kal92] A.D. Kalvin, ‘‘A Survey of Algorithms for
Constructing Surfaces from 3D Volume Data,’’ IBM
Research Report RC 17600 (#77606), January 1992.

[LC87] W.E. Lorensen and H.E. Cline, ‘‘Marching Cubes:
A High Resolution 3-D Surface Construction Algorithm,’’
Computer Graphics, vol. 21, pp. 163-169, July 1987.

[MS93] H. Muller and M. Stark, ‘‘Adaptive Generation of
Surfaces in Volume Data,’’ The Visual Computer, vol. 9
(1993), pp. 182-199.

[Nat91] B.K. Natarajan, ‘‘On Generating Topologically
Correct Isosurfaces from Uniform Samples,’’ Hewlett-
Packard Laboratories Technical Report HPL-91-76, June
1991.

[Nie91] G.M. Nielson, T.A. Foley, B. Hamann, and D.
Lane, ‘‘Visualizing and Modeling Scattered Multivariate
Data,’’ IEEE Computer Graphics and Applications, vol. 11,
no. 3, pp. 47-55, May 1991.

[NH91] G.M. Nielson and B. Hamann, ‘‘The Asymptotic
Decider : Resolving the Ambiguity in Marching Cubes,’’
Proceedings of IEEE Visualization 91, pp. 83-91, October
1991.

[Nin91] P. Ning and L. Hesselink, ‘‘Adaptive Isosurface
Generation in a Distortion-Rate Framework,’’ Proceedings
of SPIE, vol. 1459, pp. 11-21, February 1991.

[Nin92] P. Ning and L. Hesselink, ‘‘Octree Pruning for
Variable-Resolution Isosurfaces,’’ Proceedings of Computer
Graphics International, Tokyo, Japan, June, 1992.

[PT90] B.A. Payne and A.W. Toga, ‘‘Surface Mapping Brain
Function on 3D Models,’’ IEEE Computer Graphics and
Applications, 10(5), pp. 33-41, September 1990.

[Wal91] A. Wallin, ‘‘Constructing Isosurfaces from CT
Data,’’ IEEE Computer Graphics and Applications, 11(6),
Nov. 1991, pp. 28-33.

[WvG90] J. Wilhelms and A. Van Gelder, ‘‘Topological
Considerations in Isosurface Generation,’’ Computer
Graphics, vol. 24, no. 5, pp. 79-86, November 1990.

[WvG92] J. Wilhelms and A. Van Gelder, ‘‘Octrees for
Faster Isosurface Generation,’’ Transactions on Graphics,
vol. 11, no. 3, pp. 201-227, July 1992.

[WJ90] B. Wyvill and D. Jevans, ‘‘Table Driven
Polygonization,’’ in SIGGRAPH Course Notes (Modeling
and Animating with Implicit Surfaces), 1990, pp. 7.1-7.6.

[WMW86] G. Wyvill, C. McPheeters, and B. Wyvill, ‘‘Data
Structures for Soft Objects,’’ The Visual Computer, vol. 2
(1986), pp. 227-234.

