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Abstract: This paper discusses a numerical technique that approximates an implicit surface

with a polygonal representation.  The implicit function is adaptively sampled as it is surrounded

by a spatial partitioning.  The partitioning is represented by an octree, which may either

converge to the surface or track it.  A piecewise polygonal representation is derived from the

octree.

The technique is insensitive to the complexity of the implicit function, allowing the designer

great latitude.  With a polygonal representation of the surface available, certain computational

economies result.  In particular, the roots to the function need not be solved each time the

surface is rendered.
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Introduction

In recent years, implicit surfaces have become increasingly important to computer graphics.  In part,

this is due to a developing sophistication in the modeling of three-dimensional objects.  Early computer

graphics models generally were constructed by hand or generated explicitly with relatively simple

techniques.  More complex models have become practical by specifying the surface as those points

obeying some property.  When the property is written as a function of the surface points, f(P) = 0, an

implicit surface is defined.  The function f may be defined procedurally or approximated by data sets.

Because implicit surfaces conveniently define volumes, they are used frequently in CSG-based solid

modelers [Requicha, 1982].  To maintain consistency within these modelers, the conversion of

parametric polynomial surfaces into implicit form has received some attention [Sederberg, 1986].

Implicit surfaces also are used in the blending of shapes that otherwise would intersect [Blinn, 1982;

Hoffman, 1985; Middleditch, 1985].  Many complex forms are defined more readily as implicit

surfaces.  For example, explicit techniques for constructing smooth, two-way branches [Charrot, 1984;

Bloomenthal 1985] are not extended easily to n-way branches.  As this paper illustrates, such

extensibility is simple to obtain with an implicit function.

Recently there has been interest in deriving polygonal representations from implicit surfaces [Allgower

1980; Wyvill, 1985].  Many graphics systems rely upon polygons, which generally are faster to render

than other primitives.  The polygonization of implicit surfaces allows the model to be stored

conventionally and this permits subsequent renderings to be made without repeated solution of the

implicit function.  In addition, a polygonal representation facilitates a number of geometric operations

such as analysis of a surface and the resting of one surface upon another.  

The technique presented here is to surround the implicit surface with an octree, at whose corners the

implicit function is sampled.  From these samples, surface vertices are calculated and connected to

form a polygonal representation.  The octree partitioning of space isolates the definition of the implicit

function from the creation of the polygonal representation; thus, the function may be defined without

regard to the conversion process.

Although spatial partitioning is not new to implicit functions, its organization as an octree, the

concurrent adaptive refinement of the octree, and the algorithm for polygonizing each octree node are

presented as new work.

The Implicit Function and its Evaluation

An implicit surface is defined as the set of points P satisfying the implicit function f(P) = 0.  Only for a

relatively simple function does a closed form solution exist; generally, numerical techniques are

required to determine the roots of the function.  The function itself may be inspected simply by

displaying planar samples of f, such as shown in Figure 1.  If g is defined as g = f-c then, in solving for
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g = 0, a non-zero f is found; c is often called the ‘‘contour level’’ of the surface.  In Figure 1, the

surface cross-section contains one, two, or three discrete closed curves, depending on the contour level.

Figure 1: A slice measuring a function of distances to three space curves.

Various contour levels are shown.

A series of planar slices, as shown in Figure 2, constitutes a voxel array, which may be rendered as a

single image [Artzy, 1980].  A voxel array is readily procured for a number of real world objects, but

often is computationally exorbitant (O(n3), n the size of the array) for synthetic ones.  It becomes more

economical if the spatial locations are distorted according to the surface [Thompson, 1985], but this

greatly complicates the sampling process as well as presumes some a priori knowledge of the surface.  A

simpler approach, presented in the next section, is to adaptively sample within a fixed grid.

Figure 2: A series of slices, in reading order, constitutes a fixed grid sampling.
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Spatial Partitionings

This paper considers two methods for sampling an implicit surface; each method partitions space into

convex polyhedral cells whose union surrounds the surface.  The first method converges to the surface,

creating a hierarchical ‘‘converged partitioning;’’ the second tracks the surface, creating a ‘‘tracked

partitioning.’’  In both cases, the function f is evaluated at each of the vertices, or corners, of the

partitioning cell.

Only those cells that intersect the surface are retained in the partitioning; that is, each cell must contain

a corner for which f evaluates negatively and a corner for which f evaluates positively.  The surface

intersects any edge that connects corners of opposite sign.  Thus, the partitioning of space serves to

limit the domain within which roots to the implicit function are searched.

If f is continuous, a root must exist along any edge connecting oppositely signed corners.  If the

definition of implicit surface is relaxed somewhat, to be the set of points that separate positive f from

negative f, then one may converge arbitrarily close to the surface even if f is discontinuous.  In cases

where the partials to f are unknown or the function values are not relatively equidistant from the root,

binary sectioning along the edge may converge to the root more quickly than other techniques, such as

regula falsi [Dahlquist, 1974].  The convergence terminates when the distance between the converging

points is less than some fraction of the length of the edge; the average of the two converging points is

then considered to be a point lying on the implicit surface.

To form the polygonal representation, the surface vertices must be connected to their neighbors; this

requires that the value of f at each corner be shared among adjacent cells.  One technique to accomplish

this is to store corner information in a hash table, indexed by the corner coordinates [Wyvill, 1986].  A

more structured approach is for each cell to contain eight pointers to its corners.  As new cells are

created, they must point correctly to shared corners; for example, if the partitioning is hierarchical, a

node of a child cell must point to the corner it shares with its parent.  

Any cell or combination of cells that fills space may be used, but basic geometric properties, such as

corner locations and face planes, are computed more simply if the cells are identical and similarly

oriented.  In three dimensions, the only such cell that fills space is the cube [Coxeter, 1963]; it enjoys a

number of rotational symmetries, and divides into eight similarly oriented cubes.  However, negatively

signed corners of a cube cannot, in all cases, be separated from positive corners by a single plane.  This

will be an important consideration when discussing the development of the polygonal representation.

Converged Partitioning

The implicit surface may be represented as an octree, which is a hierarchical partitioning of space

formed by the subdivision of cubes, beginning with a cube that bounds the surface [Meagher, 1982].

The octree converges to the surface by subdivision of those cubes that intersect the surface; this
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continues recursively for each descendant cube until a limiting depth of recursion is reached or other

criteria are satisfied.

The faithfulness to the surface of the converging octree depends upon its depth of recursion.  Although

the details of polygonization are presented in a later section, some results are presented here to

demonstrate the relationship between depth of recursion and faithfulness to the surface.  As shown in

Figure 3, the sphere, f(P) = radius-|P-Center|, is approximated rapidly with increasing depth.

Figure 3: A sphere approximated from depths 1 through 5.

A disadvantage with the converged partitioning is that small surface detail may be missed by a large

cube, resulting in a premature termination in the subdivision of the cube.  Thus, a contiguous object

may be broken into pieces.  Another disadvantage is that, if the extent of an object is not correctly

estimated, the object may be truncated, as shown in Figure 4.  These problems may be mitigated by

various ad hoc techniques; for example, the surface gradient at the cube corners may serve to estimate

whether the surface penetrates the cube.
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Figure 4: A sphere truncated by the root cube.

Tracked Partitioning

A different approach to spatial partitioning is to track the surface by cell propagation.  An initial ‘‘seed

cell’’ is established that intersects the surface and is small in comparison to surface detail.  New cells

propagate along established cell edges that intersect the surface.  The cells may be stored as an

adjacency graph, with care required that no cell is added redundantly to the graph.  Unlike converged

partitioning, tracked partitioning requires a seed cube for each disjoint object.  The location of the seed

cell can be specified by the user or determined by iteration.  Figure 5 illustrates a tracked partitioning.

Figure 5: Surface tracking: darker cubes are older; the seed cube is dashed.

The resulting cubes may be subdivided to refine the polygonal representation.  Unfortunately, an

adjacency graph formed by the tracking process is not as amenable to adaptive subdivision as is the

converged octree.  This is remedied if an ‘‘aggregated octree,’’ rather than adjacency graph, is

constructed during the surface tracking.  As cells are added to the octree, new parent and root nodes are

required, as illustrated in Figure 6.  Octree neighbor finding techniques [Samet, 1984] are used to

prevent any redundant measuring or filling of space.
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Figure 6: Creation of the aggregated octree; the expanding root nodes are dashed.

Polygonizing the Cell

A polygonal representation is a list of surface vertices and their interconnections.  It may be derived

from a cubic partitioning by processing those cubes intersecting the surface.  If the partitioning is an

octree, the processing is confined to terminal nodes of the tree.  For each cube to be processed, the

surface vertices are ordered, forming a convex polygon whose sides are each embedded in a cube face

[Wyvill, 1986]; the process is local to each cube.

This paper introduces a simple algorithm, illustrated in Figure 7, to perform the three-dimensional

ordering of surface vertices.  It is similar to a cartographic technique that derives two-dimensional

contours from elevation data [Cottafava, 1969].  The ordering begins with any surface vertex on the

cube and proceeds towards the positive corner and then clockwise about the face to the right until

another surface vertex is reached.  This iterates until the polygon is closed.  Although a table method is

possible [Lorensen, 1987], the algorithm is especially useful for adaptive subdivision, discussed later.

Surface Polygon

2
3

1

5

4

Negatively Signed Corner

Positively Signed Corner

Surface Vertex

+
--

+

+

+ +

+

--

----

Direction of Search

Figure 7: Algorithm to order vertices.
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Unfortunately, as demonstrated in Figure 8, the polygonization may produce multiple polygons; it is

ambiguous as to whether the surface multiply slices the cube or is a narrow cylinder that surrounds two

opposing corners.  No such ambiguity exists if a simplex is the partitioning cell.  A simplex is the

simplest linear decomposition of n-space, which, for three-space, is the tetrahedron.  Any two vertices

of a tetrahedron are connected by an edge and, thus, oppositely signed corners of a tetrahedron can be

separated by a single plane.  Although techniques exist for partitioning space with simplices [Allgower,

80; Dobkin, 86], adaptive subdivision is difficult because the tetrahedron subdivides into four

tetrahedra and one octahedron.

+

+ +

+

--

--

++

+

+ +

+

--

--

++

Figure 8: An ambiguous polygonization.

Although creating the union of the two possibilities in Figure 8 often suffices, a more reliable approach

is to section the cube into twelve tetrahedra, requiring an additional sample at the center of the cube

[Hunter, 1987].  Figure 9 illustrates the cube sections; the same vertex ordering algorithm applies to the

tetrahedron.

+

-- +

--

2

3

41

Figure 9: Tetrahedral sections of a cube.  A cube is sectioned into six, five-cornered

pyramids; each pyramid is divided into two tetrahedra.

The polygon is stored simply as a list of its vertices, or, to provide more topological information, as
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indices into a list of all vertices.  To accomplish the latter, as the polygons are created, one cube at a

time, any new surface vertex is assigned an index and the index is associated with the edge containing

the vertex.  If this edge is subsequently visited during the polygonization of a neighboring cube, the

existing index is used, establishing the connectedness between polygons.  Determining the existence of

an index is possible because the corners of the edge are shared between adjacent cubes.  The polygons

resulting from this method may be decomposed into triangles, making for more uniform storage.

Connecting the vertices into polygons creates a linear surface representation.  Higher order

approximations, such as cubic patches, may be created from the vertices, if the corresponding surface

normals are known [Crow, 1988].  The boundary curves for the patch are computed locally from two

endpoints and two tangents; the tangents are derived from the surface normals.  The higher order

representation may alleviate problems, such as a lack of smoothness along silhouette edges,

traditionally associated with images of polygons.

The polygonization method will always produce a closed surface given a root octree that completely

encloses the solid.  At times, however, the designer may wish to clip away parts of the solid for the

purpose of viewing.  Thus, it is sometimes useful to introduce a vertex acceptance criterion whereby

clipped vertices are rejected; any polygon that consists solely of rejected vertices is itself rejected.

Surface Normals

At a point on the surface, the normalized gradient, ∇f, is the surface normal, presuming not all its

partials are zero.  With three more evaluations of the implicit function, the gradient is approximated:

∇f  ≈  ([f(P)-f(Px)]/∆, [f(P)-f(Py)]/∆, [f(P)-f(Pz)]/∆),

where Px,y,z represent P displaced by ∆ along the respective axes.

In shading the surface to produce an image, accuracy of the surface normal is generally more important

than the accuracy of the surface vertices.  Because the normal vector computation is very sensitive to

small fluctuations in the implicit function, it is important that the function be accurately evaluated and

continuous (for discontinuous functions, an inferior approximation to the normal may be computed as

a weighted average of the polygon normals surrounding the vertex).  Standard references on numerical

techniques caution that errors of the function are of much greater importance in numerical

differentiation than in interpolation or integration [Dahlquist, 1974]; too small a ∆ may be numerically

unstable.  The present implementation sets ∆ to one-hundredth the size of a cube.

Adaptive Subdivision

The estimate of the surface may be improved by subdividing those cubes containing highly curved or

intersecting surfaces.  A similar approach using adaptive quadtree subdivision has improved the quality

of rendered images; the criteria for subdivision were based upon object characteristics, such as

tangency and curvature, chiefly as they apply in screen space [Von Herzen, 1987].
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Using the polygon resulting from an octree node, criteria for subdivision of the node include:

whether any edge of the cube intersects the surface,

whether a maximum subdivision depth or a minimum cube size has been reached,

whether more than one polygon results from the cube,

the planarity of the polygon, and

the divergence of vertex normals from the normal at the polygon center.

Given the polygon vertices, Pi, their unit length normals, Ni, and the unit length normal N at the

polygon center, the planarity of the polygon can be estimated by: 

MAX(Vi·N), i ∈ [1, nPoints] and Vi the unit length vector from Pi and Pi+1,

and the divergence of the vertex normals can be estimated by:

MIN(Ni·N), i ∈ [1, nPoints]

The magnitude of the surface gradient, scaled by the cube size, is not an appropriate measure of

curvature; the implicit function could be planar, for example, and still have a large gradient orthogonal

to the plane.  Another measure is the maximum deviation of a cube corner value from a linear function

created as a least squares fit to the eight corner values [Heckbert, 1987].

Certain topological criteria warrant the subdivision of an adjacent cube.  If the edge of a parent cube

connects two equally signed corners and the midpoint is differently signed, as in Figure 10, left, then

the three neighbors along that edge should be subdivided.  For each face of a parent cube, if the four

child corners that are midpoints of the four edges of the face all agree in sign but disagree with the

center of the face, Figure 10, right, then the face neighbor should be subdivided.  Without such

subdivision, a hole will appear in the surface.

Face NeighborEdge Neighbor 3

Edge Neighbor 1

Edge Neighbor 2

Figure 10: Conditions warranting subdivision of adjacent cubes.

Left: midpoint of edge. Right: midpoint of face.   

Adaptive subdivision requires a more robust polygonization scheme.  As shown in Figure 11, left, a

crack occurs along the shared face of two cubes, one of which is subdivided, the other not; a similar

problem relative to quadtree methods was solved by restricting the quadtree and introducing additional
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edges  [Von Herzen, 1987].  The solution presented here is less restrictive, but sensitive to any of the

anomalies shown in Figure 10.  The algorithm to order vertices, depicted in Figure 7, is modified as

illustrated and described in Figure 11.  This algorithm created the generalized cylinder of Figure 12

(shown orthographically, for the sake of clarity).

Surface Vertex  of Child Cube

Surface Vertex of Parent Cube

---+

+

+

+

+

--

--

--

1 2

3

4

---+

+

+

+

+

--

--

--

Figure 11: Polygonization of adaptively subdivided cubes.  Left: A crack would occur
without modification to the cube polygonization algorithm.  Right: The modification
consists of tracking along the more highly divided face.  When proceeding around a
face, if the face neighbor is more highly divided, proceed about the neighbor’s face,
reversing direction at every surface vertex, until reaching the next surface vertex
located on an edge belonging to the original face.  Although shown for the face of a
cube, the same principle will apply to the face of a tetrahedron.

Figure 12: Adaptively subdivided generalized cylinder. 

Adaptive subdivision is, in effect, performed during the creation of the converged octree.  It may be

applied subsequent to the creation of an aggregated octree, but it may also be concurrent with its

creation, reducing the chance of truncation of surface detail.  An algorithm for concurrently adapted

tracked partitioning is below.  Figure 13 demonstrates the improved results. 
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Algorithm for concurrently adapted tracked partitioning

1.  A stack of cubes is initialized as empty; when added, a cube is flagged as being on the stack.
2.  A cube is "considered" in the following manner:

It is tested against the subdivision criteria described above.
If it should subdivide, then subdivide the cube and consider its child cubes.
Else:

Test its parent against the coalescence criteria:
Coalesce if subdivision is not indicated for the parent and the parent does
not contain any of the anomalies shown in Figure 10.

If it coalesces, then:
Retain the cube and its siblings in the octree to avoid redundant testing.
Flag the cube and its siblings so they won’t propagate when read from the
stack.
Flag the parent as a terminal node; add it to the stack.

Else, add it to the stack.
3.  Create a seed cube, smaller than the surface detail and centered on a surface point:

Make it the root octree node and consider it.
4.  While cubes remain on the stack:

Remove a cube from the stack.
If the cube has no children or if its children have been coalesced, then for each of its faces
that contains an edge intersecting the surface:

If the cube already has an octree neighbor adjacent to the face, then:
If the neighbor is not flagged as on the stack, consider the neighbor.

Else:
Create a neighbor cube and add it to the octree.
If the neighbor descends from any node in the octree that is coalesced:

Then coalesce all descendants from that point.
Else, consider the neighbor.

5.  Remove coalesced cubes from the octree.
6.  For any terminal cubes containing a Figure 10 anomaly, subdivide and recurse.

Figure 13: Subsequent subdivision cannot correct the truncation of a tracked
partitioning (left); but tracking concurrent with subdivision properly follows the
surface (right).  For both, the partitioning proceeded from left to right.
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Examples

In this section a small range of surfaces that may be polygonized with the above method is explored,

and several characteristics of the method are illustrated.  For example, a ‘‘blobby’’ molecule (i.e.,

equipotential surface) is created simply by summing the values of two spherical functions, as shown in

Figure 14.

Figure 14: f(P) = g(P)+h(P), where g(P) = radiusg
2/|Centerg-P|2, and similarly for h.

The polygonization method is indifferent to the topology of a surface.  For example, an equation of a

torus produces Figure 15.  Given an implicit surface that is closed and continuous, Euler’s formula may

be used to compute the genus of the surface from the number of vertices, polygons, and edges.  This

does not apply if the root cube truncates the surface (Figure 4); such a condition exists if any surface

vertex lies on the edge of the root cube. 

Figure 15: A torus.

f(P) = x4+y4+z4+R4+r4+2(x2y2+x2z2+y2z2-(R2+r2)(x2+z2)+(R2-r2)y2-R2r2),

where R and r are the major and minor radii.
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An offset surface may be defined implicitly as a set of points a fixed distance from another surface.

Figure 16 displays a surface offset from a triangle.

Figure 16: An adaptively sampled offset surface.

A number of observations regarding implicitly defined models follow a consideration of the

generalized cylinder [Agin, 1972].  The generalized cylinder may be represented as an implicit function

of distance to the nearest point on the cylinder’s axis.  Wyvill et al. modeled the axis as a set of discrete

points, a large number being necessary to avoid a lumpy appearance [Wyvill, 1986].  Alternatively, the

axis may be modeled by cubic splines and the nearest point determined algebraically.

The generalized cylinder produced by the implicit technique may, however, differ from the surface

produced using explicit techniques.  The explicit model is perhaps the most familiar and conventional;

it explicitly provides its surface points and explicitly states their connectedness.  Complex explicit

shapes may be difficult to construct; for example, a generalized cylinder must compute reference

frames, applying more at high curvature and at the hemispherical ends, as shown in Figure 17, left.

Unfortunately, it is difficult to obey certain physical constraints, such as smoothness, that may be

placed on the model.  Branching or severe flexing, for example, can cause self-intersections and

discontinuities, Figure 17, right.
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Figure 17: Two explicitly constructed, non-implicit surfaces.

One is smooth (left), but the other is not (right).

The implicit model, Figure 18, avoids these problems by separating the model definition from the

polygonization.  If the proper function is used, sharply flexing surfaces will remain smooth and not

interpenetrate, a distinct advantage in creating realistic models.

Figure 18: Implicit surfaces can avoid discontinuities.  The spatial value is

proportional to the distance to, and the curvature of, the closest point

on the defining curve.  Here, the polygons have been triangulated.

Generalized cylinders can demonstrate that implicit surfaces are indifferent to interesting topographies

such as a branching surface.  Unlike the explicit definition, the implicit definition of a branching

generalized cylinder is easily extended to n-way branching, as illustrated in Figure 19.  The resulting

surface, shown in Figure 20, does not exhibit sharp angles; this smoothness is an attribute difficult to

achieve with explicitly defined branching structures [Charrot, 1984; Bloomenthal, 1985].
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Figure 19: n-way branch function.

Figure 20: A tri-furcated ramiform.
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Conclusions

This paper has presented a method for approximating an implicitly defined surface with a polygonal

representation.  The method is in three parts: a spatial function or procedure that defines the surface,

an octree that converges to or tracks the surface, and a polygonization of individual octree cells.

The ability to derive a polygonal representation from an implicit surface has a number of consequences

for the modeling and rendering processes.  First, implicit surfaces may be rendered with polygonal

techniques in addition to the ray tracing techniques usually used [Blinn, 1982; Hanrahan, 1987].

Second, the method isolates the polygonal representation from the complexities of the surface

definition, thus improving the flexibility of a modeling environment.  With small programming effort

relatively complex shapes become possible.  Last, the availability of polygonal data may have diverse

animation or engineering applications.

Given a general set of octree operations, the basic polygonal representation method is implemented

without difficulty.  Adaptive subdivision requires a considerable additional effort.  The algorithms were

implemented on a Xerox Dorado processor, comparable in power and memory to a VAX 11/780.  The

creation of a non-adaptive octree and subsequent generation of more than 20,000 polygons for Figure

21 required about two hours.  The single greatest factor relative to computation time is the complexity

of the implicit function itself; it is important that the polygonization algorithm be implemented so that

no point is sampled more than once.

A number of issues await future investigation.  Because the method is numerical, the choice of the root

cube (for the converging method) or the seed cube (for the tracking method) is important.  If f is a

polynomial, it is possible to estimate its extent in space for  the purpose of creating an initial root cube

[Arnon, 1984]; it is also possible to determine the maximum curvature of f for the purpose of

determining the size of the seed cube [Sokolnikoff, 1964].  This paper has not discussed the deviation of

the polygonal representation from the true surface, although in the case of simplices, error bounds have

been developed [Allgower, 1987].

The octree is a convenient mechanism for adaptively storing information about the implicit surface; its

partitioning of space provides a framework for connecting surface points into a polygonal

representation.  The convergence along a cube edge to find a surface vertex is accelerated because of

the small size of the interval and its alignment with a major axis.  This alignment and the regularity of

the sampling lattice, however, may introduce undesirable aliasing artifacts for certain surfaces; these

artifacts might be reduced by stochastic jitter of the cube corner locations [Cook, 1986].

A variety of implicit surfaces remain to be tested with the above techniques.  Deformations, for

example, might be implemented as functional compositions.  Solid texture, increasingly popular as a

step in the rendering process, might be transformed into a surface and given the properties of an object.
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Many of the functions given in this paper depend upon the distance to a point or to a curve; it may be

interesting to investigate functions of distance to other surfaces.  Even with the limited tests used to

illustrate the techniques presented in this paper, the resulting surfaces have structured, smooth, and

natural qualities, which were the goals of this research.
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