
Interactive Techniques for Implicit Modeling

Jules Bloomenthal
Brian Wyvill1

Xerox PARC
Palo Alto, California

Abstract: Recent research has demonstrated the usefulness
of implicit surfaces for modeling geometric objects.  The
interactive design of such surfaces has not, however,
received the same attention as has the design of parametric
surfaces.  Principally this is due to the difficulty of
controlling the shape of implicit surfaces while displaying
the changes quickly enough for use within an interactive
design environment.  This paper describes progress towards
interactive control of implicit surfaces and introduces new
techniques useful to the designer.

CR Categories and Subject Descriptors: I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling
- Geometric algorithms; I.3.6 [Computer Graphics]:
Methodology and Techniques - Interaction techniques.

Additional Keywords and Phrases: Modeling, Design,
Implicit Surface, Animation.

Introduction

In computer graphics, a designer must design and possibly
animate three dimensional models.  The most popular
primitives for designing models are parametric surfaces
such as polygon meshes and bicubic patches [Foley 82].
Operations such as extrusion, surfaces of revolution, and
control point manipulation aid in the construction of three-
dimensional models, but do not, in general, lend themselves
to the creation of blended, offset, branching, or algebraic
surfaces, or surfaces that obey some constraint based on
distance [Bloomenthal 88]2.

An implicit surface is a surface consisting of those points p
that satisfy the arbitrary implicit function, f, f(p) = 0.
Because they possess blending and constraint properties,
implicit surfaces have received recent attention in the
design of three dimensional objects [Sederberg 85,
Rockwood 89].  In many cases, models defined implicitly
are difficult to build with conventional, parametric
methods.  There are aspects of implicit surfaces, however,
that complicate their use in the design process.  Current
tools for interacting with implicit surfaces lack the display

speeds and control flexibility necessary for a truly
interactive design environment.

In particular, the ability to display a surface in real or near
real time is crucial to the design process and, in general,
implicit surfaces are more time consuming to display than
parametric surfaces.  Also, a design system must provide for
a high degree of user control of the surface; a number of
techniques and tools have been developed that permit
global and local control of conventional parametric
surfaces, but such methods await development for implicit
surfaces.

In this paper we describe techniques to improve the
efficiency of current display methods for implicit surfaces
and introduce alternative display methods requiring
substantially less time.  We also investigate methods for the
control of implicit surfaces during the design process with
the goal of improving the interaction of the designer with
the surface being designed.

Previous Work

Both Ricci and Blinn demonstrated that implicit functions
are well suited to represent blended surfaces [Ricci 73,
Blinn, 82].  Blinn demonstrated the value of this technique
for both scientific visualization and for modeling.
Subsequently, several researchers in the United States
[Sederberg 85],  in Japan [Nishimura 85] and in Canada
[Wyvill 86a] developed techniques for implicit surface
modeling.

Common methods for the display of implicit surfaces
include ray tracing, scan conversion, and polygonization.

                                        
1 On leave from the University of Calgary, Calgary,
Alberta.

2 With the exception of refinement methods, such as
recursive polyhedral subdivision, which can produce
smooth, branching shapes [Nasri 87].



Blinn employed a ray tracer optimized for a molecular
surface; Hanrahan developed a ray tracer for general
algebraic surfaces [Hanrahan 85].  Ray tracing arbitrary
implicit surfaces, however, is slow.  Recently, Sederberg
developed a scan line method for the shaded display of
implicit surfaces limited to polynomials [Sederberg 89].

Wyvill introduced a spatial partitioning polygonization
algorithm, facilitating the rendering of implicit surfaces
with conventional polygon techniques.  Bloomenthal
demonstrated the advantage of an octree space partitioning
and provided a polygonization method that adapts to
surface curvature [Bloomenthal 88].  Polygonization of the
implicit surface permits the relatively rapid creation of a
prototype, which is particularly important in an interactive
design environment. 

The ray tracing and polygonization methods are capable of
displaying arbitrary implicit surfaces, but do not,
unfortunately, operate in real or near real time on today’s
workstations.  This is because surface vertices are obtained
through an iterative search mechanism; usually this is a
convergence along a segment that spans a root of the
implicit function (whether this be a portion of an eye to
object ray or an edge of a spatial partitioning cell).  This
requires considerably more processing than for a
comparable parametric surface.3

Characteristics of Implicit Surface Modeling

Algebraic surfaces constitute the best known subset of
implicit surfaces.  Their shape, however, is difficult to
control interactively; a designer often has no intuitive
understanding of the effect of altering polynomial
coefficients or exponents.

Our research has focused on the use of implicit surfaces
defined by skeletons [Wyvill 86b, Bloomenthal 89].  By
skeleton we mean a tree structured set of skeletal elements,
such as points, curves or polygons.  The designer creates a
shape by interactively defining the skeleton and various
parameters that control how that skeleton becomes a
polygonized surface.  Although many skeletally defined
surfaces may be expressed analytically, we prefer to treat
our implicit functions as procedural, i.e. defined by
procedures that return a scalar value given a three-
dimensional point.  Such procedures may contain
conditionals and other operations difficult or impossible to
express analytically.

                                                                                                      
3 Parametric functions readily generate surface vertices by
evaluating the function over its parametric range.  Some
algebraic surfaces are readily solved analytically, but we do
not limit our consideration to this subset of implicit
surfaces.

We confine our representation of implicit surfaces to
polygons [Wyvill 86a, Bloomenthal 88], since they are
drawn quickly and are the most generally used graphic
primitive for interactive modeling.  A polygonized implicit
surface can not contain intersecting polygons, a
characteristic distinguishing it from a parametric surface.

Software required to convert a high level description of a
model to a lower level polygon description is usually more
complex for parametric surfaces; the software must
explicitly accommodate the topological complexities of the
model.  For example, consider connecting two cylinders
ends; the parametric definition must explicitly account for
the connection; the implicit definition need not.

Shape Control

This section summarizes existing techniques for creating
shapes from skeletons and describes new ways in which a
user may interactively control the surface shape.

Skeletons

Various skeletally defined shapes are described in the
literature [Burtnyk 76].  We define a skeleton to consist of:

 · points: degenerate skeletons that serve as
centers for simple quadrics (spheres,
ellipsoids) or superquadrics.

 · splines: a set of central axes for generalized
cylinders with possibly varying radii or cross
sections.

 · polygons: a mesh of polygons and splines
used to produce an offset surface.

Each skeletal element is associated with a locally defined
implicit function; individual functions are blended using a
polynomial weighting function that can be controlled by
the user.  Figure 1 illustrates in two dimensions the relation
between the skeleton and its surface.

Figure 1: A skeleton (left) defines two implicit primitives
(center), resulting in a blended surface (right).



Well established techniques exist for manipulating and
editing skeletons in real time [Sutherland 63].  In using a
skeleton to define an implicit surface, the designer may
exercise global or local control of an implicit model in three
separate ways:

 · definition/manipulation of the skeleton.

 · definition/adjustment of those implicit
functions defined for each skeletal element.

 · definition of a blending function to weight
the individual implicit functions.

The skeleton is usually much simpler than its corresponding
surface and yet can be quite instructive to the designer.  In
Figure 2 the branching generalized cylinder (a surface
offset from a skeleton consisting of space curves) is shown
as a skeleton and as a surface.

Figure 2: A skeleton and corresponding surface.

Blending of primitives

Each implicit primitive associated with a skeletal element
may be blended using established implicit blending
techniques [Wyvill 86a, Bloomenthal 88, Rockwood 89].
Woodwark offers a survey of blending techniques
[Woodwark 86].

A weighting function that blends individual implicit
primitives is shown in Figure 3 [Wyvill 86a].  For a three-
dimensional point p the distance r is found to each skeletal
element and weighted by f; if r >= R, its contribution to
the blend  is zero.  By adjusting f and R, the designer
defines the comparative influences and final blend of the
primitives.  This function is based on radius-squared,
eliminating the need for a square root when computing
distance.  Note that f can be negative, providing subtractive
as well as additive primitives.

f(r) = -(4/9)r6+(17/9)r4-(22/9r)2

r

f

R

f(r) = 1-(4/9)r6+(17/9)r4-(22/9)r2

Figure 3: Weighting function for blending implicit
primitives.

Offsets to the function
The user may define an offset (sometimes called the iso-
value or contour level) to be added to the blend of implicit
primitives, resulting in a dilation or contraction of the entire
object; this is demonstrated in Figure 9 where different
surfaces are obtained for different offset values.

Manipulation of individual functions
Certain implicit primitives are easily and directly controlled
by the designer.  For example, the Graphicsland animation
system at the University of Calgary allows the user to
interactively alter ellipsoidal primitives defined as quadrics
or superquadrics [Wyvill 86c].  In Figure 4, the axes of the
ellipsoids are represented skeletally by prisms.

By manipulating the skeletal ellipsoids, the user can
produce complex models.  For example, the train’s engine
shown in Figure 5 requires only twenty primitives.  Six
ellipsoids form the boiler, which sits atop a base of six
smaller ellipsoids.  Other small ellipsoids provide detail,
such as the chimney.  The tops of the cab and the chimney
have been flattened using primitives with large radii and
negative weights.  In Figure 4 negatively weighted
ellipsoids are shown as four sided prisms; positive ellipsoids
are shown as eight sided.  The train was the subject of a
short animation [Wyvill 88].

Figure 4: Skeletal elements for the train.



Figure 5: Surface of the train.

Procedural methods

The blending, offset, and manipulation techniques just
described depend on simple metrics (such as distance to a
curve) or simple algebra (such as an ellipsoidal function).
Many implicit surfaces are not so easily defined by so few
parameters.  A fourth technique available to the designer is
the procedural implicit function; this is an arbitrary
function whose input is a point in space and whose output
is a real value.  This permits arbitrarily complex geometric
operations to occur during the computation of the function
value [Bloomenthal 89].  For example, in Figure 6 (left) the
value at the point p depends on the distance d to the base of
the triangle formed by p, a, and b.  We call this a compound
metric, as opposed to the simple metric that would sum
functions of d1 and d2.

A procedural implicit function permits a greater degree of
localized control as compared to a simple blend of implicit
primitives in which each primitive potentially has a global
affect on the surface.  We consider a procedural function to
define a class of objects; parameters of the procedure
permit the definition of individual objects within the class. 

Interaction with complex procedures is somewhat
awkward; usually changes to the procedure must be
compiled and the procedure module reloaded.
Alternatively, the procedure can be interpreted, eliminating
compilation at the expense of performance.  A technique
we suggest to assist the designer with procedural definitions
is the interactive diagramming of the operation of the
procedure.  By allowing the designer to interactively query
and diagram the function at arbitrary points in space, it
becomes easier to understand and modify the procedural
function.  Figure 6 (right) is an example of such
diagramming.

d
d1

d2

p

a

. . . 
f=-.013

f=-.071

b

Figure 6: A procedural implicit function and
corresponding diagram.

It is an open question as to how such definitions may be
described without resorting to a programming language.  A
promising approach is to define these procedures by
example.  Various two-dimensional systems (e.g.
MetaMouse, [Maulsby 89]) provide for programming by
example, and other graphical systems (like Juno [Nelson
85]) permit definition of graphical operations through
example.  To our knowledge no such definitions by
example exist for three dimensional models.

Shape Display

With implicit modeling, a designer can control complex
shapes using a few high level primitives.  For this to be
interactive, alterations in the primitives must be reflected in
the corresponding surface as quickly as possible.  Rapid
feedback is necessary to convince the user that a surface is
changing shape smoothly as it is edited.  In reality,
immediate feedback is difficult to achieve for complex
surfaces using current workstation technology.  In this
section we describe existing display techniques and suggest
improvements that make progress towards real time
response.

Established Display Techniques

In [Blinn 1982], surfaces representing electron density
functions were rendered directly, a technique that does not
lend itself to interactive work on current hardware.  In an
attempt to accelerate the display of implicit surfaces, a
polygonization algorithm using spatial partitioning was
developed [Wyvill 86a].  With spatial partitioning, surface
accuracy can be exchanged for speed by altering the size of
the partitions (cells), essentially changing the sampling rate
of the implicit function.  This allows for fast prototyping.

As previously mentioned, the skeleton of a model is
composed of various elements.  To find the value of the
implicit function at a point in space, the contributions from
all nearby skeletal elements are summed.  To locate points
on the surface, the function evaluation is repeated for many
points in space.  Efficiency can be improved by limiting the
radius of influence of each skeletal element and sorting



them into the cells they influence.  Thus, to evaluate the
function at a point within a given cell, only those primitives
influencing the cell need be considered.

The uniform space partitioning introduced in [Wyvill 86a]
was improved by using an octree [Bloomenthal 88]; an
adaptive algorithm was also introduced that samples the
function more often where the curvature is greater.  For a
given maximum depth of the octree, fewer polygons are
produced for the same quality of display, thus reducing
display time.

In [Jevans 87] the use of frame coherence is suggested to
improve feedback when local portions of the implicit
surface are modified.  Only those cells of the octree for
which the influencing skeletal elements are modified need
be re-computed and polygonized.  This achieves
considerable savings when changes are local, since much of
the model does not require re-computation.  

Improved Surface Display Techniques

A number of methods exist that represent the surface at
varying levels of detail; each method, to some degree,
exchanges polygonization accuracy for speed of display.
We now describe several techniques to reduce display time.
We propose that a design system permit the user to select
the display technique most appropriate for the required
surface detail and display speed.

· Octree display

Rather than display surface polygons, the octree is
displayed with back faces of cells removed, something
appropriate for volume rendering hardware.  This is a
coarse representation of the surface, but does not require
polygonization.

· Polygon vertex computation

Once the implicit function is spatially partitioned, polygon
vertices are computed from those partition edges that
penetrate the surface.  Again, accuracy may be exchanged
for speed.  Binary subdivision or iterated regula falsi along
the partition edge is highly accurate [Bloomenthal 88], but
requires repeated evaluation of the implicit function.
Alternatively, a single step of regula falsi, i.e., simple linear
interpolation (Figure 7), may be employed, offering
considerable savings in computation [Wyvill 86a].  This
presumes the function to be continuous and locally linear.
Linear interpolation of nonlinear functions will be
inaccurate, resulting in artifacts such as rippling surfaces in
motion.  All of these methods are mathematically simpler if
the edge is aligned with a major axis.

(x1, f1)

edge

(x0, f0)

x

f

x = (x0f1-x1f0)/(f1-f0)

Figure 7: Linear interpolation along an edge.

· Improved partitioning strategies

As previously mentioned, adaptive subdivision produces a
surface of higher complexity for the same number of
polygons as produced by uniform subdivision.  Adaptive
subdivision requires computation of curvature, however,
which is often compute intensive.  Thus, the workstation’s
ability to display polygons must be balanced against its
ability to create the octree.  For those surfaces where
curvature is computationally inexpensive, adaptive
subdivision will improve design interaction.

A reduction in tree traversal time can improve design
interaction.  In a variant octree data structure, the number
of child nodes, rather than a constant eight, is a function of
surface shape, resulting in fewer empty nodes.  Memory
savings of 15% and traversal time savings of 10% were
achieved [Jevans 88b].  Other partitionings, such as the KD
tree. may converge to the surface more quickly than does
the octree [Samet 84], again resulting in improved design
interaction.  These marginal performance improvements
may not merit the additional implementation complexity.

· Sub-division ‘‘paint brush’’

Rather than subdivide according to computed curvature, an
octree could be subdivided interactively.  Here, the user
indicates those portions of the octree that should be
subdivided to provide greater surface detail.  The
intersection of the ‘‘user ray’’ (a line from the eye through a
point on the screen) with an octree is a relatively fast
operation [Glassner 84], capable of interactive speeds.

· Function simplicity

In designing an implicit surface, most processing is devoted
to evaluating the implicit function.  It is critical this be done
efficiently.  Significant improvement often can be achieved
with an approximation to the function.  For example, the
generalized cylinder in [Bloomenthal 88] requires the
solution of a fifth degree polynomial; in [Wyvill 86a] a set
of spheres approximates a cylinder, requiring a simpler
solution (Figure 8).  These soft objects (a.k.a. metaballs; see
[Nishimura 85]) provide a large performance improvement.
The approximation may be replaced with the exact solution
once the prototype is complete.



  

Figure 8: Approximation with 15 spheres (top),
30 spheres (center), the exact solution (bottom).

· 2d slices

Rather than display a surface, it is possible to display the
implicit function directly, at a considerable savings of time.
A two-dimensional window into the function can be
rendered on a display, as shown in Figure 9.  This requires
interpretation skills on the part of the designer, and does
not necessarily provide a good impression of the object’s
shape.  However, certain qualities, such as surface
continuity, may be readily detected by direct inspection.

Figure 9: Slice of surface and varying contours.

The object shown in Figure 2 required an estimated 44,000
evaluations of the implicit function; the slice shown in
Figure 10 required about 14,000 evaluations, for a
performance improvement of approximately three to one.
This improvement depends on the shape of the object and
the resolutions used (the size of the partitioning cubes and
the resolution of the slice); a coarser sampling for the slice
may be acceptable to the designer.

Figure 10: Slice for object shown in Figure 2.

· Image thresholding

If an implicit function is rendered as a two-dimensional
slice, or as a volume [Drebin 88], manipulation of the
display’s video look-up table (i.e., color map) may yield a
highly interactive study of the object.  For example, it is
possible to approximate the effects of altering offsets to
implicit functions by modifying the tables.  This technique
can also accentuate discontinuities in the implicit function.

· Scattering

Another technique that dramatically improves design
performance is scattering, in which seed points, presumed
close to the surface, migrate to the surface.  This does not
require polygonization, which is relatively compute
intensive.  The seed points are readily established given a
skeleton and its corresponding cross-sections.4  For each
point the gradient of the implicit function is computed,
providing a direction for the points to migrate.  The points
continue to migrate until reaching the surface, Figure 11.
No polygonal data is available with this technique and fine
detail will be absent, but the technique offers greatly
improved speed.  For example, 1,300 function evaluations
were required for the object in Figure 11; the same object
shown in Figure 2 required an estimated 44,000
evaluations, yielding an approximate performance
improvement of 33 to 1.

Figure 11 lacks apparent depth since a major depth cue is
given by parallax, which is readily available with an
interactive display.  The use of points to represent a surface
is not new [Connolly 83], but the migration of points is a
novel technique for the visualization of implicit models.
An additional benefit is that point density is higher along
silhouettes, aiding the designer in interpreting the display.  

                                                                                                      
4 This requires a vector orthogonal skeleton’s tangent at a
cross-section, which is simpler than computing a reference
frame using parallel transport [Shani 84].



Figure 11: Original seed points (top), migration paths
(center), and resting points (bottom).

· Idle moments
The user should be allowed to enable the system to refine
the surface during otherwise idle moments, similar to the
adaptive refinement of images [Forrest 85, Bergman 86].
These refinements progress naturally from:

 · a simple skeleton,
 · cubes representing the terminal nodes of an octree,
 · the polygonized octree,
 · a rendered surface.

Conclusions and Future Work

We have considered performance issues in the interactive
design of implicit surfaces, surveying prior implicit surface
research and noting its relevance to interactive design.  We
have proposed new design methods that potentially operate
at interactive speeds.  These include:

 · the use of alternative data structures.

 · the display of a slice of the implicit function.

 · the scattering/converging of points to
approximate the implicit surface.

 · the interactive diagramming of procedural
implicit surfaces.

 · the user control of adaptive subdivision.

We have discussed ways in which the user can alter the
shape of an implicit surface, such as offsets to the implicit
function, adjusting the blending functions, and interactively
defining skeletons.  It remains an open question, however,
whether users of the future will be able to construct
sophisticated, procedural shapes without the need to
program.  Here the prospects of indirect programming by
example seem promising, although distant.

Our present work is such that the novel techniques
described have been implemented and tested in isolation.
We hope to build an interactive test bed where tools for
implicit surface design may be evaluated in a design
environment.  We also anticipate development of a set of
design criteria to assist us in comparing implicit and
parametric methods in model design. 

Acknowledgements

We thank a number of individuals and organizations for
their assistance.  Pat Hanrahan, Paul Heckbert, Dave
Jevans, and Geoff Wyvill all offered valuable technical
insight during the past several years,  The Natural Sciences
and Engineering Research Council of Canada and the
Xerox Palo Alto Research Center provided funding for this
research.  Finally, we thank Rich Riesenfeld who succinctly
noted, more than a decade ago, that surface design was an
interesting problem.



References

Bergman L., Fuchs H., Grant E., Spach S. Image Rendering
by Adaptive Refinement.  Proceedings of SIGGRAPH’86
(Dallas, Texas). In Computer Graphics 20, 4 (August 1986),
29-38.

Blinn, J.F. A Generalization of Algebraic Surface Drawing.
ACM Transactions on Graphics, 1, 3 (July 1982), 235-256.

Bloomenthal, J. Polygonization of Implicit Surfaces.
Computer Aided Geometric Design, 5, 4 (November 1988).

Bloomenthal, J. Techniques for Implicit Modeling. Xerox
PARC Technical Report, P89-00106  (January 1989).

Burtnyk N. and Wein M. Interactive Skeleton Techniques
for Enhancing Motion Dynamics in key Frame Animation.
Communications of the ACM, 19, 10  (October 1976),
564-584.

Connolly, M.L. Solvent-accessible Surfaces of Proteins and
Nucleic Acids.  Science, 221 (August 1983), 709-713.

Drebin, R.A., Carpenter, L., and Hanrahan, P. Volume
Rendering.  Proceedings of SIGGRAPH’88 (Atlanta,
Georgia). In Computer Graphics 22, 4 (August 1988), 65-74.

Foley, J.D. and Van Dam, A. Fundamentals of Interactive
Computer Graphics. Addison-Wesley, Reading, Mass, 1982.

Forrest R. Antialiasing in Practice in Fundamental
Algorithms for Computer Graphics, Ed. Earnshaw, R.A. in
Proceedings of NATO ASI Series, Springer-Verlag, 1985,
113-134.

Glassner, A.S. Space Subdivision for Fast Ray Tracing.
IEEE Computer Graphics and Applications, 4, 10 (October
1984), 15-22.

Hanrahan P. Ray Tracing Algebraic Surfaces.  Proceedings
of SIGGRAPH’83 (Detroit, Michigan). In Computer
Graphics 17, 3 (July 1983), 83-90.

Jevans, D.J., Wyvill, B., and Wyvill, G.  Speeding up 3D
animation for simulation. Proc. MAPCON IV (Multi and
Array Processors), (January 1988a), 94-100.

Jevans, D.J., Wyvill, B. Ray Tracing Implicit Surfaces Proc.
Research Report, University of Calgary, Dept. of Computer
Science, 88/292/04, (January 1988b).

Maulsby, D.L., Witten, I. H., Kittlitz, K.A. Specifying
Graphical Procedures by Example Proceedings of
SIGGRAPH’89 (Boston, Mass.). In Computer Graphics 23,
3 (July 1989), 127-136.

Nasri, A.H. Polyhedral Subdivision Methods for Free-
Form Surfaces. ACM Transactions on Graphics, 6, 1
(January 1987), 29-73.

Nelson, G. Juno, a constraint-based graphics system.
Proceedings of SIGGRAPH’85 (San Francisco, California,
July 22-26, 1985). In Computer Graphics 19, 3 (July 1985),
235-243.

Nishimura. H., Hirai, A., Kawai, T., Kawata, T., Shirakawa,
I., and Omura, K. Object Modeling by distribution function
and a method of image generation. Journal of papers given
at the Electronics Communications Conference 1985,
J68-D(4), 1985 (In Japanese).

Ricci, A. A Constructive Geometry for Computer Graphics.
The Computer Journal 16, 2 (May 1973), 157-160.

Rockwood, A. The Displacement Method for Implicit
Blending Surfaces in Solid Models, ACM Transactions on
Graphics, In Press 1989.

Samet, H. The Quadtree and Related Hierarchical Data
Structures, ACM Computing Surveys, 16(2), (June 1984).

Sederberg, T.W. Algebraic Piecewise Algebraic Surface
Patches. Computer Aided Geometric Design, 2 (1985), 53-59.

Sederberg, T.W. and Zundel, A.K. Scan Line Display of
Algebraic Surfaces.  Proceedings of SIGGRAPH’89
(Boston, Mass.). In Computer Graphics 23, 3 (July 1989),
147-156.

Shani, U. and Ballard, D.H. Splines as Embeddings for
Generalized Cylinders. Computer Vision, Graphics, and
Image Processing, 27 (1984), 129-156.

Sutherland, I.E. SKETCHPAD: A Man-Machine
Graphical Communication System. Proc. AFIPS Spring
Joint Computer Conference, 23 (1863), 229-246.

Woodwark, J.R. Blends in Geometric Modeling.
Proceedings of the 2nd IMA Conference on the Mathematics
of Surfaces, (Cardiff, September 8-10, 1986).

Wyvill, G., McPheeters, C., and Wyvill, B. Data Structure
for Soft Objects. Visual Computer, 2, 4 (August 1986a),
227-234.

Wyvill, B., McPheeters, C., and Wyvill, G. Animating Soft
Objects. Visual Computer, 2, 4 (August 1986b), 235-242.

Wyvill, B., McPheeters, C., and Garbutt, R. The University
of Calgary 3D Computer Animation System. Journal of the
Society of Motion Picture and Television Engineers, 95, 6
(1986c), 629-636.

Wyvill, B. The Great Train Rubbery. SIGGRAPH ’88
Electronic Theater and Video Review, Issue 26 (August
1988).


